
RSP-QL Semantics: a Unifying Query
Model to Explain Heterogeneity of RDF

Stream Processing Systems
Daniele Dell’Aglio

Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico of Milano, Italy

Emanuele Della Valle
Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico of Milano, Italy

Jean-Paul Calbimonte
Distributed Information Systems Laboratory,
École Polytechnique Fédérale de Lausanne,

Switzerland

Oscar Corcho
Ontology Engineering Group, Universidad

Politécnica de Madrid, Spain

ABSTRACT

RDF and SPARQL are established standards for data interchange and querying on the Web. While
they have been shown to be useful and applicable in many scenarios, they are not sufficiently
adequate for dealing with streams of data and their intrinsic continuous nature. In the last years
data and query languages have been proposed to extend both RDF and SPARQL for streams and
continuous processing, under the name of RDF Stream Processing – RSP. These efforts resulted in
several models and implementations that, at a first look, appear to propose alternative syntaxes
but equivalent semantics. However, when asked to continuously answer the same queries on the
same data streams, they provide different answers at disparate moments due to the heterogeneity
of their operational semantics. These discrepancies render the process of understanding and
comparing continuous query results complex and misleading. In this work, we propose RSP-QL,
a comprehensive model that formally defines the semantics of an RSP system. RSP-QL makes
explicit the hidden assumptions of currently available RSP systems, allows defining a formal notion
of correctness for RSP query results and, thus, explains why available implementations provide
different answers at disparate moments.
Keywords: RDF streams, continuous query processing, conceptual model, correctness

INTRODUCTION

One of the key ingredients of the Ubiquitous
Web is the management of data streams, which
may be obtained from a range of data sources,
from social networks to environmental sensors.
These data streams may be expressed using RDF,
possibly according to well-established vocabu-
laries, such as the W3C Semantic Sensor Net-
work Ontology (Compton et al., 2012). In these

cases, we can talk about RDF streams, which
are formally defined as potentially unbounded
sequences of time-varying RDF statements or
graphs. In recent years, several RDF Stream
Processing (RSP) systems have emerged, which
allow querying RDF streams using extensions of
SPARQL that include operators that take into
account the streaming nature of these dynamic
data sources (Barbieri, Braga, Ceri, Della Valle,
& Grossniklaus, 2010; Calbimonte, Jeung, Cor-



2 RSP-QL SEMANTICS

cho, & Aberer, 2012; Phuoc, Dao-Tran, Parreira,
& Hauswirth, 2011; Anicic, Fodor, Rudolph, &
Stojanovic, 2011). These systems are heteroge-
neous in terms of syntax and capabilities (due
to the choice of operators and syntax selected to
extend SPARQL). In addition, they implement
different evaluation semantics for a set of con-
structs that may look similar in principle (for
example, they may handle time window opera-
tors differently). These engines have different
assumptions on how the query processing and
delivery of results take place, which makes it
difficult to describe, compare, understand and
evaluate their behavior.
In this paper, we address the following re-

search question: is it possible to create a for-
mal RDF stream processing model, including its
evaluation semantics, that can be used to de-
scribe existing RSP systems?. For this purpose,
we propose RSP-QL, a unifying formal model
for representing and processing RDF streams,
that reflects the different semantics of existing
RSP systems. RSP-QL extends the SPARQL
model and also takes into account two existing
models coming from the streaming data world:
CQL (Arasu, Babu, & Widom, 2006) and SE-
CRET (Botan et al., 2010). CQL is a continuous
extension of SQL: its semantics define a formal
model with three kinds of operators (S2R, R2R
and R2S) that process and transform streams
and relations. SECRET is a framework to char-
acterise and analyse the operational semantics
of window operators. A second contribution
of this paper is to show how this formal model
can be used to test whether an RSP system is
correct or not. RSP-QL extends our previous
work (Dell’Aglio, Balduini, & Della Valle, 2013)
that was focused on formalising the notion of
correctness in RSP query processing and on the
development of an oracle – a system that tests
whether an RSP implementation works in accor-
dance to the corresponding evaluation semantics
of the language that it gives support to. We
have shown that this oracle, based on the RSP-
QL model can effectively model the behavior
of existing engines, and assess the correctness
of their results. As a result of our experiments
we detected errors in existing implementations,

some of which have been now fixed by the cor-
responding system implementers.
The remainder of the paper is organised

as follows. After a brief recap on RDF and
SPARQL, we formally define the notion of RDF
streams and the evaluation semantics of a generic
SPARQL extension that allows handling RDF
streams (which we name RSP-QL). Our formal
definitions are based on the existing represen-
tation and evaluation semantics for RDF and
SPARQL. We then show that existing RSP sys-
tems can be represented as instances of the RSP-
QL query model, highlighting the differences
among them, e.g. different strategies to evaluate
the continuous queries and different ways to
manage the sliding windows. Next, we formally
define the notion of correctness in RSP systems,
and we explain how to use it to check whether
system implementations are computing the cor-
rect answers. Finally, we present the conclusion
and final remarks.

BACKGROUND: RDF AND SPARQL

RDF is a W3C recommendation for data inter-
change on the Web (Cyganiak, Wood, & Lan-
thaler, 2014). RDF data is structured as directed
labeled graphs, where the nodes are resources,
and the edges represent relations among them.
Each node of the graph can be a named resource
(identified by an IRI), an anonymous resource
(a blank node) or a literal. We identify with
I, B and L respectively the sets of IRIs, blank
nodes and literals. We define an RDF term as
an element of the set I ∪B ∪ L.

Definition 1. AnRDF statement d is a triple
(s, p, o) ∈ (I ∪B)× (I)× (I ∪B ∪ L). A set of
RDF statements is an RDF graph.

Example 1. The Sirius Cybernetics Corpora-
tion offers real-time geo-marketing services to
shop owners to increase their sales by distribut-
ing instantaneous discount coupons to potential
shoppers nearby. Alice and Bob, who respectively
own shops A and B, decided to try that service.
We can represent those facts in the following
RDF graph gshops:



RSP-QL SEMANTICS 3

:a rdf:type :Shop .

:b rdf:type :Shop .

:alice :owns :a .

:bob :owns :b .

Given an RDF graph, it is possible to query it
through the SPARQL query language (Harris &
Seaborne, 2013), which is another W3C Recom-
mendation. A SPARQL query typically contains
one or more triple patterns called a basic graph
pattern. Triple patterns are similar to RDF
triples except that they may contain variables in
place of resources. These patterns may match a
subgraph of the RDF data, by substituting vari-
ables with RDF terms, resulting in an equivalent
RDF subgraph.

Definition 2. A triple pattern tp is a triple
(sp, pp, op) such that

(sp, pp, op) ∈ (I∪B∪V )×(I∪V )×(I∪B∪L∪V ),

where V is the infinite set of variables. A basic
graph pattern is a set of triple patterns.

Graph patterns in a SPARQL query can in-
clude basic graph patterns and other compound
patterns defined by different algebraic operators,
such as OPTIONAL, UNION and FILTER.
To define the semantics of the evaluation of a

SPARQL query, we summarise the notion of solu-
tion mappings, and evaluation of SPARQL graph
patterns, as detailed in (Harris & Seaborne, 2013;
Pérez, Arenas, & Gutierrez, 2009).

Definition 3. A solution mapping µ is a par-
tial function µ : V → I ∪B∪L. It maps a set of
variables to a set of RDF terms. A mapping has
a domain dom(µ) which is the subset of V over
which it is defined. We denote as µ(x) the RDF
term resulting by applying the solution mapping
to variable x. We denote as ω a multiset of
solution mappings, and as ψ a sequence of
solution mappings.

Given a SPARQL query over an RDF graph,
a query solution can be represented as a set of
solution mappings, each of which assigns terms
of RDF triples in the graph, to variables of the

query. SPARQL defines its operators in terms of
these mappings. For instance the JOIN operator
is defined as follows:

Definition 4. Let ω1 and ω2 be multisets of
solution mappings. SPARQL 1.1 specification
defines JOIN as:

Join(ω1, ω2) = {merge(µ1, µ2)|
µ1 ∈ ω1 ∧ µ2 ∈ ω2

∧ µ1 and µ2 are compatible}

Compatibility of mappings is defined as fol-
lows: mappings µ1 and µ2 are compatible if
∀x ∈ dom(µ1) ∩ dom(µ2), then µ1(x) = µ2(x).
The definitions of other operators are fully de-
tailed in the SPARQL 1.1 specification (Harris
& Seaborne, 2013).
SPARQL queries operate over collections of

one or more RDF graphs, namely RDF datasets.

Definition 5. An RDF dataset DS is a set:

DS = {g0, (u1, g1), (u2, g2), ...(un, gn)}

where g0 and gi are RDF graphs, and each corre-
sponding ui is a distinct IRI. g0 is called the de-
fault graph, while the others are called named
graphs. During the evaluation of a query, the
graph from the dataset used for matching the
graph pattern is called active graph. Multiple
graphs can become active during the evaluation.

Finally, SPARQL defines four query forms:
ASK, SELECT, CONSTRUCT, DESCRIBE. The most com-
mon query form, SELECT, produces a result of
variable bindings matching the graph pattern;
a CONSTRUCT produces a new RDF graph with
the query solutions; ASK produces a boolean
value that is true if at least a solution exists;
and DESCRIBE produces an RDF description of
resources in the solution. For instance, a select
query is declared as follows:

query → SELECT v1, ..., vn WHERE gp

where v1, ...vn is a list of variables, subset of the
variables of the graph pattern gp.
There are other constructs such as solution

modifiers (e.g. DISTINCT, ORDER BY, LIMIT) that are



4 RSP-QL SEMANTICS

applied after pattern matching. These and other
modifiers can be found in the SPARQL Query
Language specification (Harris & Seaborne,
2013). With all these concepts at hand, we
can define a SPARQL query as follows.

Definition 6. A SPARQL query is a tuple
(E,DS,QF ), where E is a SPARQL algebra
expression, DS is an RDF dataset, and QF is a
query form.

Example 2. We are interested in querying the
graph in Example 1 to find out who owns the
shop A. In this case the dataset is formed by
the default graph containing the graph in Exam-
ple 1, the query form is SELECT and the algebra
expression is composed of a single triple pattern.

SELECT ?person WHERE {?person :owns :a }

The evaluation semantics of a SPARQL query
algebra expression w.r.t. an RDF dataset is also
defined for every operator of the algebra.

Definition 7. The SPARQL evaluation se-
mantics of an algebra expression E is denoted
as eval(DS(g), E), where DS(g) is the dataset
DS with active graph g.

For example, given two graph patterns P1 and
P2 the evaluation of the join operator is given
as:

eval(D(g), Join(P1, P2)) =
Join(eval(D(g), P1), eval(D(g), P2))

STREAMING EXTENSION OF THE
RDF MODEL

Now that we have introduced the basic con-
cepts that define RDF and SPARQL, we move
in this section into how the RDF model can be
extended to deal with data streams. One of the
first steps towards this goal consists in consid-
ering the temporal dimension that RDF data
in such data streams must have. Several works
studied how to add such temporal dimension
to RDF (Gutiérrez, Hurtado, & Vaisman, 2005;

Pugliese, Udrea, & Subrahmanian, 2008; Motik,
2012), for instance by adding a fourth element
to the triple to express the validity time. In this
section, we formalise the notion of RDF stream
associating a time instant to each RDF state-
ment, as in (Barbieri et al., 2010; Calbimonte
et al., 2012; Phuoc et al., 2011; Komazec, Cerri,
& Fensel, 2012; Urbani, Margara, Jacobs, van
Harmelen, & Bal, 2013). We start by defining
the notion of time as in (Arasu et al., 2006).
Definition 8. The time T is an infinite,
discrete, ordered sequence of time instants
(t1, t2, . . .), where ti ∈ N. A time unit is the
difference between two consecutive time instants
(ti+1 − ti) and it is constant.

It is now possible to extend the definition of
RDF statement with a temporal annotation, and
consequently define RDF streams as sequences
of them.
Definition 9. A timestamped RDF state-
ment is a pair (d, t), where d is an RDF
statement and t ∈ T is a time instant. An
RDF stream S is a (potentially) unbounded
sequence of timestamped RDF statements in
non-decreasing time order:

S = ((d1, t1), (d2, t2), (d3, t3), (d4, t4), . . .)

where, for every i > 0, (di, ti) is a timestamped
RDF statement and where ti <= ti+1.
Example 3. (cont’d). The Sirius Cybernetics
Corporation offers for free-download a mobile
App that delivers instantaneous discount coupons
to shoppers while they are near by shops like A
and B. The shoppers Carl, Diana and Eve have
such an App on their mobiles. When they are
within 200 meters from A or B, the App records
it on the RDF stream Snearby with the following
timestamped RDF statements (we use a turtle-
like notation, where the statements are enriched
with the time relative instant):

:diana :isNearby :a [2] .

:eve :isNearby :b [2] .

:carl :isNearby :a [5] .

:eve :isNearby :a [7] .

:diana :isNearby :b [12] .



RSP-QL SEMANTICS 5

The statements assert that Diana, Carl and Eve
are nearby the shop A respectively at the time
instants 2, 5 and 7; Eve and Diana are nearby
the shop B at time instants 2 and 12.

Before moving to the extension of the query
language to process RDF streams, we introduce
the time notion in RDF graphs. As explained
in the RDF 1.1 primer:

The RDF data model is atemporal:
RDF graphs are static snapshots of
information.

We introduce now the concepts of the time-
varying RDF graph and instantaneous RDF
graph. Intuitively, time-varying graphs capture
the dynamic evolution of a graph over time,
while instantaneous graphs represent the content
of the graph at a fixed time instant.

Definition 10. A time-varying graph G is
a function that relates time instants t ∈ T to
RDF graphs:

G : T → {g | g is an RDF graph}

An instantaneous RDF graph G(t) is the
RDF graph identified by the time-varying graph
G at the given time instant t.

Figure 1 helps in understanding the difference
between the two concepts. We indicate with the
lowercase letter g (g, g1, g2, . . .) the RDF graphs,
and with the capital letter G the time-varying
graphs (G,G1, G2, . . .). The time-varying graph
G associates time instants to RDF graphs; for
each time instant t for which G is defined, G(t)
refers to an instantaneous RDF graph; being
G a function, each time instant is associated
to one and only one RDF graph. It is worth
to note that the instantaneous graph contains
RDF statements (without any timestamp). It
follows that instantaneous graphs can be queried
through the SPARQL query language without
any continuous extension.

Example 4. (cont’d). The Sirius Cybernetics
Corporation manages to convince both Alice and
Bob to use its instantaneous discount coupon

Figure 1. : Time-varying and instantaneous graph

service from the time instant 2 to the time in-
stant 13. After that, Alice leaves the service,
and only Bob keeps using it. The time-varying
graph gshops, which captures the shops using the
instantaneous coupon service, is built as follows:

• at time t1 < 2, Gshops(t1) is the empty
graph;

• at time t2 ∈ [2, 13], Gshops(t2) is the graph
presented in Example 1 (gshops) including
both shops;

• at time t3 > 13, Gshops(t3) is the following
RDF graph g′shops including only shop B:

:b rdf:type :Shop .

:bob :owns :b .

CONTINUOUS EXTENSION OF
THE SPARQL QUERY LANGUAGE

In the previous section, we defined the RSP data
model by adding the temporal dimension in the
RDF model in three different ways: timestamped
RDF statements are RDF statements with a
time annotation; RDF streams are ordered se-
quences of timestamped RDF statements, and
time-varying and instantaneous RDF graphs cap-
ture the changes of an RDF graph over time. In
this section, we present RSP-QL, an extension
of the SPARQL language to query this data
model. The two main requirements that drive
the design of RSP-QL are: 1) the evaluation of
a query over an input data should produce a



6 RSP-QL SEMANTICS

unique solution; 2) RSP-QL should capture the
operational semantics of the most relevant exten-
sions of SPARQL for timestamped statements,
i.e. C-SPARQL, CQELS and SPARQLstream.
One of the main differences between SPARQL

and RSP-QL is the way in which queries are
evaluated. Adopting the DSMS nomencla-
ture (Babu & Widom, 2001; Chen, DeWitt,
Tian, & Wang, 2000), SPARQL allows to is-
sue one-time queries, queries that are eval-
uated once by the SPARQL engine. In con-
trast, RSP-QL allows to register continuous
queries, queries issued once and continuously
evaluated (Babu & Widom, 2001), i.e. they are
evaluated multiple times, and the answer is com-
posed by listing the results of each evaluation
iteration.

Example 5. (cont’d). The instantaneous dis-
count coupon service offered by the Sirius Cyber-
netics Corporation allows shop owners to propose
discounts to shoppers nearby, who use the App
associated to the service, e.g., when their shops
are empty. Those instantaneous coupons are
streamed out in the RDF stream Scoupon:

:alice :offers "10% discount on ..." [8] .

:bob :offers "free coffee at ..." [15] .

The first statement states that Alice offers an
instantaneous discount coupon at time instant 8,
while the second reports on a offer from Bob at
the time instant 15.

Sirius Cybernetics Corporation monitors the
streams Snearby (the shops with shoppers nearby)
and Scoupon, and the time-varying graph Gshops

(the shops that use the service, which are chang-
ing over time) to send instantaneous coupons
proposed by the shop owners to shoppers nearby
their shops. This query requires a continuous
evaluation, because it has to notify coupons to
shoppers, who are nearby a shop, every time that
shop proposes a new coupon and it has to notify
shoppers, who get nearby a shop, with the most
recent coupons of that shop.

We present the definition of RSP-QL query,
which extends the notion of SPARQL query pre-
sented in the background section.

Figure 2. : From SPARQL (top) to RSP-QL engine
(bottom)

Definition 11. An RSP-QL query Q is de-
fined as (SE, SDS,ET,QF ) where
• SE is an RSP-QL algebraic expression

• SDS is an RSP-QL dataset

• ET is the sequence of time instants on
which the evaluation occurs

• QF is the Query Form
The continuous-evaluation paradigm influ-

ences the definition of RSP-QL query. We go in
depth in the remaining of the section, but we
provide now some intuitions about this model.
First, the dataset has to take into account

time, both to manage the RDF streams and to
cope with time-varying RDF graphs.
Next, we need to define the continuous query

evaluation semantics. It requires two main opera-
tions: we need to extend the one-time SPARQL
evaluation semantics, and we need to let the
SPARQL operators process time-changing data.
Regarding the first point, we exploit the ET
time instant sequence and push it in the evalua-
tion process of SPARQL. To maintain backward



RSP-QL SEMANTICS 7

compatibility with the SPARQL query model,
we do not modify the SPARQL operators, but
we work on their inputs and outputs. As we
see above, most of the RSP-QL operators are
compliant with the relative SPARQL ones. The
intuition behind this choice is that the continu-
ous evaluation can be viewed as a sequence of
instantaneous evaluations, so, fixed a time in-
stant, the operators can work in a time-agnostic
way.
Last, we need to work on the output of the

query, in order to generate streams as output.
We do it by introducing the new class of *stream-
ing operators, that takes as input sequences of
solution mappings and produces sequences of
timestamped solution mappings; finally, we ex-
tend the SPARQL query forms to be able to
convert a sequence of time-annotated solution
mappings into a stream.

Assumptions

In the rest of this section, we make the following
assumptions. The first assumption is related
to the time required for query evaluation: we
assume that the time required to evaluate the
query over the current input and to produce
the portion of answer is lower than the time
unit. It is a common assumption made in this
kind of work (Cugola & Margara, 2012), so as
to guarantee that the stream processor works
without accumulating delays in the continuous-
evaluation process.
We also assume no duplicates in the input

data. This assumption is made for the sake of
simplicity and to describe the RSP-QL model
exploiting the notion of RDF graph, that is a set
of RDF statements (and not a bag, like relations
in DSMS). This constraint influences the result
of query processing with some queries (such as
the ones with aggregations). Anyway, as we
explain below, this constraint can be relaxed by
introducing simple bookkeeping information, i.e.
statement counters.

RSP-QL dataset
The addition of the time dimension and the
presence of RDF streams requires a new notion
of RDF dataset, that determines the input data
of the RSP-QL query. We introduce the concept
of window over a stream, which creates RDF
graphs by extracting relevant portions of the
stream.
Definition 12. A window W (S) is a set of
RDF statements extracted from a stream S.
A time-based window is a window defined
through two time instants o, c (respectively
named opening and closing time instants) such
that:

W (S) = {d|(d, t) ∈ S ∧ t ∈ (o, c]}

Example 6. (cont’d) The time-based window
W over Snearby with opening time o = 4 and
c = 8 contains the following RDF statements:

:carl :isNearby :a .

:eve :isNearby :a .

It is worth noting that the window builds an RDF
graph: in fact, the RDF statements do not have
any time annotation.

A time-based window selects a portion of the
statements contained in the stream. In order to
be able to process the content of the stream at
different time instants, we need an operator that
creates multiple RDF graphs over the stream (i.e.
a time-varying graph). This operator is called
time-based sliding window, and it operates by
creating a set of time-based windows (with dif-
ferent opening/closing time instants) over the
stream.
Definition 13. A time-based sliding win-
dowW takes as input a stream S and produces a
time-varying graph GW (Figure 3). W is defined
through a set of parameters (α, β, t0), where:
• α is the width parameter

• β is the slide parameter

• t0 is the time instant on which W starts
to operate



8 RSP-QL SEMANTICS

Figure 3. : Window and sliding window.

We denote with W(S) the application of sliding
window W on the stream S

The above definition explains which are the
inputs and outputs of the sliding window. Next,
we provide the description of how it works. To
distinguish the time-based windows (which pro-
duce sets of RDF statements) from the time-
based sliding windows (operator) we use the
capital letter W , W1, W2, . . . for the former and
the blackboard bold letter W, W1, W2, . . . for
the latter.
Given a time-based sliding window W defined

by α, β and t0, the RSP engine generates a se-
quence of time-based windows (W1,W2, . . .), de-
fined through the following constraints:

• the opening time of the first window W1
is t0

• each window has width α, i.e. for each
window Wi of W defined through (oi, ci],
it holds:

ci − oi = α

• the difference between the opening time
instants of two consecutive windows is β,
i.e. given two windows Wi and Wi+1 of W,
defined respectively in the time intervals
(oi, ci] and (oi+1, ci+1], holds:

oi+1 − oi = β

Given a time instant tnow, we name present
window1 the window Wp of W defined with

(op, cp] such that op is the most recent opening
time, i.e.

6∃ Wj of W defined in (oj, cj] : op < oj < tnow

As aforementioned, the output of a time-based
sliding window W is a time-varying graph GW.
At each time instant t for which W is defined,
GW(t) contains the content of the present (sub-
)window W

′
p = (op, t] such that W ′

p ⊆ Wp, i.e.,

W(S, t) =GW(t) =
{d|d ∈ W ′

p ∧ (d, td) ∈ S ∧ td ∈ (op, t]}

Example 7. (cont’d) The time-based sliding
window W1 over Snearby defined through (α =
5, β = 2, t0 = 1) generates the following win-
dows: W1 between (1, 6], W2 between (3, 8], W3
between (5, 10] and so on. If W1 is evaluated
at the time instant 9, the present window is W3
and it contains:

:eve :isNearby :a .

To summarise, given a time instant tnow and
a time-based sliding window W defined through
the parameters (α, β, t0), W takes as input a
stream S, produces a time-varying graph GW,
and GW(tnow) denotes an instantaneous graph
at time tnow. Finally, we can define the concept
of RSP-QL dataset.

Definition 14. An RSP-QL dataset SDS is
a set composed by an (optional) default graph,
n (n ≥ 0) named graphs and m (m ≥ 0) named
time-varying graphs obtained by the applica-
tion of time-based sliding windows over o ≤ m
streams:

SDS ={G0,

(u1, G1), . . . , (un, Gn),
(w1,W1(S1)), . . . , (wj,Wj(S1)),
(wj+1,Wj+1(S2)), . . . , (wk,Wk(S2)),
. . .

(wl,Wl(So)), . . . , (wm,Wm(So))}

where



RSP-QL SEMANTICS 9

• G0 is the default time-varying graph

• up, wq are IRIs (up, wq ∈ I) for each p ∈
[1, n] and q ∈ [1,m]

• (up, Gp) identifies a time-varying named
graph, for each p ∈ [1, n]

• (wq,Wq(Sr)) identifies a named time-
based sliding window over an RDF stream,
for each q ∈ [1,m] and r ∈ [1, o]

When composing a SPARQL query, it is pos-
sible to declare different graphs that will be
merged to compose the default graph. In this
case, the default graph is composed by merg-
ing together the unnamed graphs and unnamed
time-based sliding windows applied to the RDF
streams.

Example 8. (cont’d) One of the RSP-QL
dataset that can be built to answer the query
presented in Example 5 is:

SDS ={G0 = Gshops,

(w1,W1(Snearby)), (w2,W2(Scoupon))}

where the default graph is the time-varying graph
describing the shops that use the instantaneous
discount coupon service, w1 and w2 identify re-
spectively the sliding window W1 over the stream
Snearby (defined in Example 7), and the sliding
window W2 over the stream Scoupon. W2 is de-
fined as (α = 2, β = 2, t0 = 0).

Time-varying collections of solution
mappings
After defining the notion of RSP-QL dataset,
we move to the query evaluation process. In
this section, we treat the problem of processing
data that change over time; in the next section,
we extend the SPARQL evaluation semantics in
order to support the continuous evaluation.
As explained above, the continuous query eval-

uation consists in evaluating the query multiple
times at different instants. At each iteration,
fixed a time instant, the RSP-QL engine can
determine on which data the algebraic expres-
sion should be evaluated and from now on, the

evaluation process is atemporal. In other words,
we need to push the time dimension in the data
types exchanged by the operators, and we do
not need to redefine the existing SPARQL 1.1
operators to work with timestamped data. This
approach is different from the one in (Bolles,
Grawunder, & Jacobi, 2008), where the authors
redefine the SPARQL algebraic operators in or-
der to cope with streaming data.
As explained in the background section,

SPARQL algebra operators work on RDF graphs
or on collections of solution mappings (Harris
& Seaborne, 2013). For example, BGPs receive
as input the active RDF graphs and produce as
output multisets (bags) of solution mappings;
JOIN, UNION and DIFF operators consume and pro-
duce multisets of solution mappings; and ORDER

BY and DISTINCT operators work on sequences of
solution mappings.
In the previous section, we introduced the

notions of time-varying and instantaneous RDF
graphs, to take into account the time dimension:
the time-varying RDF graph G is a mapping
between the time and the set of RDF graphs,
and given a time instant t the instantaneous
graph G(t) identifies an RDF graph. A BGP op-
erator, as defined in the SPARQL specification,
can operate over an instantaneous RDF graph
(since it is an RDF graph). Generalising, in our
model each operator processes instantaneous in-
puts and produces instantaneous outputs; the
sequence of instantaneous inputs (outputs) at
different time instants are time-varying inputs
(outputs). It follows that we need to define
the time-varying and instantaneous extensions
for multisets (identified respectively by Ω and
Ω(t)) and sequences (identified by Ψ and Ψ(t))
of solution mappings. It is worth noting that
we are modifying the concept of collections of
solution mappings, and not the definition of
solution mapping itself: it is a key-point to guar-
antee that the existing SPARQL 1.1 operators
continue to work as by their original definition.

Definition 15. A time-varying sequence of
solution mappings Ψ maps time instants t ∈



10 RSP-QL SEMANTICS

T to the set of solution mapping sequences:

Ψ : T → {ψ | ψ is a
sequence of solution mappings}

Given a time-varying sequence of solution map-
ping Ψ, we use the term instantaneous se-
quence of solution mappings Ψ(t) to refer
to the sequence of solution mappings at time t.
A time-varying multiset of solution

mappings Ω maps the time T to the set of
solution mapping multisets

Ω : T → {ω | ω is a
multiset of solution mappings}

Given a time-varying multiset of solution map-
pings Ω, we use the term instantaneous mul-
tiset of solution mappings Ω(t) to refer to
the multiset of solution mappings at time t.

Even if our model ensured that existing
SPARQL 1.1 operators continue to work on RDF
statements and solution mappings, we need to
adjust their definitions to introduce the time-
aware collections of inputs (outputs). In the
following, we show the extension for the JOIN

operator, presented in Definition 4. The fol-
lowing definition introduces the instantaneous
multisets of solution mappings (differences w.r.t.
SPARQL 1.1 JOIN definition are underlined).

Definition 16. For a given time instant t, let
Ω1(t) and Ω2(t) be instantaneous multisets of
solution mappings. We define RSP-QL JOIN as:

Join(Ω1(t),Ω2(t)) = {merge(µ1, µ2)|
µ1 ∈ Ω1(t)
∧ µ2 ∈ Ω2(t)
∧ µ1 and µ2 are compatible}

Notably, fixed a time instant t, Ω1(t) and
Ω2(t) are two bags of solution mappings: the
JOIN operator works on their content (solution
mappings) as in the original definition.

Continuous evaluation semantics
At this point, RSP-QL operators can process
instantaneous inputs and produce instantaneous
outputs. What we need to do now is to model
the continuous evaluation process. To do it,
we include the evaluation time in the SPARQL
evaluation semantics; then, we explain that the
continuous query answering is done by executing
the query at each time instant of the sequence
ET (the evaluation time instants defined in the
RSP-QL query presented at the beginning of the
section).
We now extend the definition of SPARQL

evaluation semantics (Definition 7) to take into
account the time dimension: we add a third pa-
rameter, evaluation time t, in the eval function
signature.

Definition 17. (RSP-QL evaluation semantics).
Given an RSP-QL dataset SDS, an algebraic
expression SE and an evaluation time instant t,
we define

eval(SDS(G), SE, t)

as the evaluation of SE at time t with respect
to the RSP-QL dataset SDS having active time-
varying graph G.

This new concept requires a revision of the
definitions of the existing SPARQL evaluation
of algebraic operators. For the sake of brevity,
we show the continuous evaluation semantics of
BGP and JOIN operators.

Definition 18. The evaluation of a Basic
Graph Pattern operator is defined in the fol-
lowing way:

eval(SDS(G), BGP, t) =
eval(SDS(G, t), BGP )

The solution of the BGP is computed with re-
gard to the RSP-QL dataset SDS having G as
active graph at time t (i.e. G(t) it is an instan-
taneous graph). The output of the evaluation is
an instantaneous multiset of solution mappings
Ω(t).



RSP-QL SEMANTICS 11

If G is a time-varying graph, SDS(G, t) refers
to the instantaneous graph G(t) at time t; other-
wise, if G is the graph obtained through a sliding
window W over a stream S, SDS(G, t) points
to the instantaneous graph GW(t). To sum up:

SDS(G, t) =


SDS(G(t)),
if G is a time-varying graph
SDS(W(S, t)),
if W(S, t) is obtained by W(S)

The above evaluation of the BGP is important
because it shows that the BGP is evaluated over
an RDF graph (identified by an instantaneous
graph at evaluation time). The evaluation defini-
tions of the other existing SPARQL 1.1 algebraic
operators propagates the evaluation time to the
evaluation of the algebraic expressions. The next
definition presents the evaluation of the JOIN
operator.

Definition 19. The evaluation of JOIN is
defined as follows:

eval(SDS(G),Join(P1, P2), t) =
Join(eval(SDS(G), P1, t),

eval(SDS(G), P2, t))

where SDS(G) indicates the active time-varying
graph G in the RDF stream dataset SDS and
P1, P2 are graph patterns.

In the algebraic tree the JOIN operators have
two children, represented by the two graph pat-
terns P1 and P2. The evaluation of the JOIN op-
erator consists in applying the JOIN (Definition
16) to the two multisets of solution mappings
computed by evaluating P1 and P2 at time t
with regards to the RSP-QL dataset with active
graph G.

Streaming operators
In previous sections, we extended the query
model of SPARQL to consume dynamic data
(data that changes over time) and to process it
in a continuous fashion. Now, we need to work

on the output of the query: our model should
produce not only time-varying RDF graphs, but
also RDF streams. To enable this feature, we
add a set of *streaming operators, that take as
input sequences of solution mappings and pro-
duce sets of timestamped solution mappings. As
we see above, in the RSP-QL model the times-
tamped solution mappings can be processed only
by the Query Form operators, what means that
the *streaming operators are thought to be the
outer elements of the algebraic trees. We plan
to investigate in future work the introduction
of additional operators that are able to process
those kinds of data.
Despite other RSP-QL operators that are in-

herited by SPARQL, the *streaming operators
require a time instant as input parameter be-
cause they are time-aware: they need to know
the current evaluation time in order to produce
their outputs. They reintroduce the temporal
dimension in the data, appending a time instant
on the solution mappings; *streaming operators
can be considered the dual operators of sliding
windows, that process timestamped RDF state-
ments removing the time annotation by the RDF
statements. Those operators were first defined
for relational data stream processing in (Arasu
et al., 2006). For this reason, we maintain the
original names and we redefine them to work in
the RSP-QL setting. We start by defining the
RStream operator.

Definition 20. Let Ψ be a time-varying se-
quence of solution mappings and t ∈ T the
evaluation time instant. We define RStream in
the following way:

RStream(Ψ(t), t) = {(µ, t)|µ ∈ Ψ(t)}

We define the RStream evaluation seman-
tics as follows:

eval(SDS(G),RStream(L), t) =
RStream(eval(SDS(G), L, t), t)

where L is a solution sequence.

The RStream operator is the simplest one
among the three that we present in this section.



12 RSP-QL SEMANTICS

It takes as input a sequence of solution map-
pings Ψ(t), and annotates each of them with
the evaluation time t. This operator allows
streaming out the whole answer produced at
each evaluation iteration.

Definition 21. (IStream). Given a time-
varying sequence of solution mappings Ψ, and
two consecutive time instants tj−1 and tj in
the ET sequence (i.e. there is no time instant
t ∈ ET such that t ∈ (tj−1 < tj)2), we define
the IStream operator as follows:

IStream(Ψ(tj−1), Ψ(tj), tj) =
{(µ, tj)|µ ∈ Ψ(tj) ∧ µ 6∈ Ψ(tj−1)}

and we define the IStream evaluation seman-
tics as follows:

eval(SDS(G),IStream(L), tj) =
IStream(eval(SDS(G), L, tj−1),

eval(SDS(G), L, tj), tj)

IStream streams out the difference between
the answer of the current evaluation and the
one of the previous iteration. IStream generally
produces shorter answers and it is used in cases
where it is important to put the focus on what
is new.

Definition 22. (DStream). Given a time-
varying sequence of solution mappings Ψ, and
two consecutive time instants tj−1 and tj in the
ET sequence, we define the DStream operator
as follows:

DStream(Ψ(tj−1), Ψ(tj), tj) =
{(µ, tj)|µ 6∈ Ψ(tj) ∧ µ ∈ Ψ(tj−1)}

We define the DStream evaluation seman-
tics as following:

eval(SDS(G),DStream(L), tj) =
DStream(eval(SDS(G), L, tj−1),

eval(SDS(G), L, tj), tj)

The output produced by DStream is the part
of the answer at the previous iteration that is
not in the current one (for example, a continuous
query over Gshops to stream out which discount
coupons end).

Query Form
Depending on the presence of the *streaming
operator, the output of each evaluation of the al-
gebraic expression E of the query can be a either
a sequence of solution mappings or a sequence
of timestamped solution mappings.
If the algebraic expression SE does not con-

tain the *streaming operator, a case allowed by
C-SPARQL and SPARQLstream, at each itera-
tion the query produces a compliant SPARQL
answer, i.e. a variable binding for SELECT, a
boolean value for ASK and a set of RDF state-
ments for CONSTRUCT and DESCRIBE. This
decision preserves interoperability between RSP
systems and SPARQL engines.
When the *streaming operator is in the al-

gebraic expression the output of the RSP-QL
engine is a stream: at each evaluation iteration,
the engine appends a new set of elements at the
output stream. Similarly to the first case, the
output format depends on the query form. In
the SELECT case, the output is a relational
data stream, in the case of ASK is a stream
of boolean values, and finally, in the case of
CONSTRUCT/DESCRIBE, the output is an
RDF stream. It is worth noting that only in
the last case the output can be consumed by
another RSP-QL engine; in the case of SELEC-
T/ASK query forms, the output stream can feed
a relational stream processor.

Evaluation time instants
We defined ET as the sequence of time instants
at which the evaluation occurs. It is an abstract
concept which is key to the RSP-QL query model
and its continuous-evaluation semantics, but it
is hard to use it in practice when designing the
RSP-QL syntax. In fact, the ET sequence is
potentially infinite, so the syntax needs a com-
pact representation of this set. Moreover, the



RSP-QL SEMANTICS 13

ET set could be unknown when the query is
composed: the time instants on which the query
has to be evaluated could depend on the data
that is streaming through the RSP, e.g. the
query should be evaluated every time the win-
dow content changes. In other words, query
designers can be interested in associating the
query evaluation to some relevant events, which
can be known a priori (e.g. periodical evaluation)
or not (e.g. status of the window content).
To address this issues, we introduce in RSP-

QL the notion of policy to express the time
instant set ET . The concept was initially pro-
posed by Botan et al. in SECRET (Botan et al.,
2010).

Definition 23. A policy P is a combination of
one or more boolean conditions (shortly strat-
egy, according to the SECRET model) which
allows identifying the potentially infinite set of
time instants ET . Each strategy is associated
to a window and could set constraints to the
window content or its parameters. Given a pol-
icy P , the evaluation time instant set ETP
is the set of time instants on which the policy
in P is satisfied, i.e.

t ∈ ETP iff P is satisfied at time t

We can now indicate with Q =
(SE, SDS,ETP , QF ) the RSP-QL query where
ET is represented through the policy P . In the
remaining of this section, we describe the four
SECRET strategies:

CC Content Change: the window reports if
the content changes.

WC Window Close: the window reports if the
active window closes.

NC Non-empty Content: the window reports
if the active window is not empty.

P Periodic: the window reports only at reg-
ular intervals.

Example 9. (cont’d) Let’s define the policy P
for the query described in Example 5: it should
detect the shoppers recently spotted in nearby

shops that offer instantaneous discount coupons.
The query involves two streams, Snearby and
Scoupon, and for each of them there is an associ-
ated sliding window W1(Snearby) and W2(Scoupon)
with parameters (α1 = 5, β1 = 2, t01 = 1) and
(α2 = 2, β2 = 2, t02 = 0). As policy P , we set
the Window Close and the Non-empty Content
to W2(Scoupon):

P = WC[W2(Scoupon)] ∧NC[W2(Scoupon)]

As result, the ETP set contains pair time instants
such that the window content of W2(Scoupon) is
not empty.

RSP-QL query evaluation
We can now put all the pieces together and
explain how an RSP-QL query is evaluated by
an engine.

Definition 24. Let Q a continuous query Q =
(SE, SDS,ET,QF ), where SE is an RSP-QL
algebraic expression, SDS is an RSP-QL dataset
(Definition 14), ET is the sequence of evalua-
tion time instants (Definition 23) and QF is the
query form. The continuous evaluation of Q
produces an output Ans(Q), and it is computed
in the following way: for each t ∈ ET ,

1. evaluate the algebraic expression E over
the RSP-QL dataset, as explained in the
continuous evaluation semantics:

eval(SDS(G0), SE, t)

2. each operator works on instantaneous col-
lections of inputs (e.g. RDF statements,
solution mappings) and produce instanta-
neous collections of outputs accordingly
to the definition of time varying solution
mappings.

3. format the output of evaluation according
to the query form: if the algebraic expres-
sion has as outer element a *streaming
operator the output is a stream; otherwise
it is a SPARQL compliant answer.



14 RSP-QL SEMANTICS

Example 10. (cont’d) We can now sum up and
formalise the query described in Example 5. The
query Qex is defined through the four parameters
(SE, SDS,QF,ET ). The RSP-QL dataset of
Qex is the one described in Example 8:

SDS ={G0 = Gshops,

(w1,W1(Snearby)), (w2,W2(Scoupon))},

where W1 and W2 are defined respectively
through (α = 5, β = 2, t0 = 1) and (α = 2,
β = 2, t0 = 0).
Instead of the RSP-QL algebraic expression,

we write the WHERE clause in a SPARQL-like syn-
tax:

Rstream{

GRAPH w_1 { ?shopper :isNearby ?shop }

GRAPH w_2 { ?shop_owner :offers ?coupon }

?shop_owner :owns ?shop

}

The clause matches shoppers nearby shops
whose owner is offering an instantaneous dis-
count coupon. The sequence of solution map-
pings are streamed out using the Rstream oper-
ator.

For simplicity, we set the query form as SELECT

and we assume to project all the variables. The
evaluation time instant set is defined through the
policy:

P = WC[W2(Scoupon)] ∧NC[W2(Scoupon)]

Now, we can apply Definition 24 and deter-
mine which is the unique correct answer of Qex.
First, the ET set is determined; given the policy
P , the input data and the sliding window defi-
nitions, it follows that the evaluation occurs at
time 8 and 16. At these time instants, the alge-
braic expression is evaluated over the RSP-QL
dataset, and the following timestamped solution
mappings are computed:
Finally, the timestamped solution mappings

are appended at the Ans(Qex) stream.

?shopper ?shop ?shop_owner ?coupon timestamp

:carl :a :adam "10% discount on ..." 8
:eve :a :adam "10% discount on ..." 8
:diana :b :bob "free coffee at ... " 16

Relaxing the no duplicate data as-
sumption
To close this section, we explain how to relax
the assumption presented at the beginning of
this section: the input data does not contain
duplicates. We made this assumption to explain
the RSP-QL model using concepts familiar to
the reader, in particular the one of the RDF
graph. We use RDF graphs to represent the
content of the sliding windows over the streams,
and this choice allowed us to use well-known
operations such as RDF graph merging and ba-
sic graph pattern evaluation. Anyway, RDF
defines the concept of RDF graph as a set of
RDF statements, and consequently no duplicates
are admitted.
Relaxing the constrain, we can cope with

the presence of duplicates by introducinga sim-
ple bookkeeping mechanism, and by annotating
RDF statements with the number of repetitions
in the windows. To put this new annotation, it
is necessary to extend several components of the
RSP-QL model. For example, sliding windows
should initialise the counter; the evaluation se-
mantics of aggregates and joins has to take the
counters into account; in RDF graph merging,
if both RDF graphs to be merged contain the
same statement, then the relative counters have
to be summed up.

EXPLAINING HETEROGENEITY
OF RSP SYSTEMS

In this section we study the heterogeneity
of the operational semantics of C-SPARQL,
SPARQLstream and CQELS using the RSP-QL
model, which is generic enough to capture their
behaviour. This characterisation provides a
basis for formally analyzing RSP engines, e.g.



RSP-QL SEMANTICS 15

modeling interoperability among RDF stream
processors, or for defining correctness of query
results, as shown later in the correctness section.
It is worth to note that this analysis involves
the query models of C-SPARQL, SPARQLstream
and CQELS, as well as their query language
syntaxes and their implementations. In fact,
there are parameters of the RSP-QL model that
are constrained by their query language syn-
tax, while other parameters are encoded in the
system implementations.
All those systems support (a subset of)

SPARQL 1.1 operators (Zhang, Pham, Corcho,
& Calbimonte, 2012). They are heterogeneous
in the way they process the RDF streams and re-
port the results. The following table summarises
the comparison of the systems and highlights
their differences.

Feature C-
SPARQL

CQELS SPARQL
stream

Sliding window
parameters

α and β α and β α and β

RSP-QL dataset GWs in G0 named
GWs

GWs in G0

Evaluation time
instants

Window
close
and Non-
empty
content

Content-
change

Window close
and Non-empty
content

Streaming oper-
ator

Rstream Istream Rstream,
Istream and
Dstream

Sliding window operator for C-
SPARQL, CQELS and SPARQLstream

RSP-QL defines the sliding window operator
through three parameters: width (α), slide
(β) and t0. The query models of C-SPARQL,
SPARQLstream and CQELS only allow control-
ling the width and slide of windows. The t0
parameter is managed internally by systems and
the query language does not provide syntactic
constructs to constrain it. The query designer
cannot determine when the first window of the
sliding window opens: each sliding window can
start at different time instants, and consequently,
the system can produce different outputs.

Figure 4. : Sliding windows with different t0 values

Example 11. Let consider a C-SPARQL query
that defines a sliding window W through the pa-
rameters (α = 5, β = 2). The sliding window is
applied to the Snearby stream. The t0 parameter
cannot be explicitly defined, and the sliding win-
dow can open at different time instants, as shown
in Figure 4. This fact influences the portion of
the stream that is captured by the sliding window
operators: if we focus on the first window of each
sliding window operator, we can notice that in
the first case (t0 = 0) it contains the elements s1
and s2, in the second case (t0 = 1) it contains
the elements s1, s2 and s3, while in the third
case (t0 = 2), the first window captures s3 only.

RSP-QL dataset for C-SPARQL,
CQELS and SPARQLstream

The RSP-QL dataset is a generic defini-
tion, which is constrained by the syntaxes of
query languages of C-SPARQL, CQELS and
SPARQLstream.
In CQELS, a named time-varying graph is

associated to each window; window content can
be accessed using the STREAM operator that is
analogous to the SPARQL GRAPH one. It is not
possible to put the time-varying graph generated
from the sliding window in the default graph of
the dataset.
C-SPARQL does the opposite: its query lan-

guage does not allow to name the time-varying
graphs computed by the sliding windows. As a
result, all the graphs computed by the sliding



16 RSP-QL SEMANTICS

windows are merged and set as default graph. In
SPARQLstream, similarly, named stream graphs
can be declared but not used inside the query
body. Therefore, graphs derived by sliding win-
dows are logically merged in the default graph
of the query dataset.
Even if a comparison among the expressive-

ness of the RSP system query languages if out
of scope of this paper, we can make some con-
siderations in order to explain how the shape
of the dataset influences these systems. On the
one hand, it may be considered easier to write
queries in C-SPARQL and SPARQLstream than
in CQELS: all the sliding windows are declared
before the WHERE clause and the data from the
streams is available in the default graph. On
the other hand, CQELS allows to write more
complex queries, such as queries with multiple
sliding window over the same stream.
Example 12. In Example 8, the following
dataset is defined:

SDS ={G0 = Gshops,

(w1,W1(Snearby)), (w2,W2(Scoupon))}
This dataset can be created in CQELS: its
query language allows accessing window contents
through the identifiers w1 and w2. C-SPARQL
and SPARQLstream do not allow accessing named
time-varying graphs generated by sliding windows
so the above dataset cannot be managed by these
system.
Let’s now consider this dataset:

SDS ={G0 = Gshops ∪GW1 ∪GW2},

where GW1 and GW2 are the time-varying
graphs computed respectively by W1(Snearby))
and W2(Scoupon). In this case, C-SPARQL and
SPARQLstream can manage this dataset, while
CQELS cannot – it does not allow adding the
window contents to the default time-varying
graph.

Evaluation time instants in C-
SPARQL, CQELS and SPARQLstream

In the evaluation time subsection, the concepts
of policy and strategy were presented. They

Figure 5. : Policy implementations in RSP systems

allow determining the set of time instants ET
on which evaluations occur. Looking at the avail-
able RSP systems, it is possible to observe that
policy and strategy are features of the imple-
mentation, i.e. neither the query model nor the
query language syntax allow expliciting control
policies and strategies. This is a major source
of heterogeneity among RSP systems.
As analysed in (Dell’Aglio, Calbimonte, Bal-

duini, Corcho, & Della Valle, 2013), C-SPARQL
and SPARQLstream adopt a Window Close and
Non-empty Content policy to the windows of the
query, while CQELS implements the Content-
Change policy (it evaluates the query as every
time new statements enter the window). It fol-
lows that the systems build different evaluation
time instant sets, and consequently they stream
out new results at different time instants.

Example 13. Let’s consider the sliding window
W in Figure 5: it is over Snearby and it is de-
fined through (α = 5, β = 2, t0 = 1). The lower
part of the figure shows the effect of different
policies on the set time instants the evaluation
occurs: each diamond represent an evaluation
time in the relative RSP system. While CQELS
evaluates the query as soon as it receives new
timestamped RDF statements, C-SPARQL and
SPARQLstream follow a regular pattern: they
report every time the windows close (except for
the cases where windows are empty).



RSP-QL SEMANTICS 17

Streaming operators
The last feature on which we focus is the stream-
ing operator support. Previously, we defined
three streaming operators: Rstream, Istream
and Dstream, but only SPARQLstream supports
all of them. C-SPARQL permits only the
Rstream operator (it streams out the whole out-
put at each evaluation), while CQELS admits
only the Istream one (it streams out only the
new statements).
C-SPARQL answers can be verbose as the

same solution mapping could be in different por-
tions of the output stream computed at different
evaluation time instants. It is suitable when it
is important to have the whole SPARQL query
answer at each step. CQELS streams out the
difference between the timestamped set of map-
pings computed at the last step and the one
computed at the previous step. Consequently,
answers are usually short (they contain only the
difference) and it is a good solution when data
exchange is expensive.

CORRECTNESS OF RDF STREAM
PROCESSING SYSTEMS

Finally, in this section we address the correct-
ness assessment issue, to show one of the possible
uses of RSP-QL. The question we investigate
is: given an RSP system, an input dataset and
a query, is its output correct? In the previous
sections, we described all the elements we need
to cope with this: First, we defined the RSP-
QL model, a query model able to determine a
unique answer given a RSP-QL dataset and a
RSP-QL query. Next, we explained how existing
systems are captured by the RSP-QL model.
In particular, some parameters of the RSP-QL
model are hidden in the systems, due to con-
straints in the query language syntaxes and in
their implementations.
Even if those parameters cannot be controlled,

it is necessary to take them into account to
determine if the answer is correct. Intuitively, a
query q for an RDF Stream Processing system is
a partially defined RSP-QL query, i.e. some of its

parameters are undefined or implicitly defined.
Every RSP system can be analyzed, so that it
is possible to determine the values that those
parameters assume, and consequentially derive
a set of RSP-QL queries. Each of those queries
generates a different (but correct) answer: if the
result of the query q matches one of them, we
can state that it is correct (as we will see next).
Anyway, to assess whether an RDF Stream Pro-
cessing system behaves correctly or not, some
assumptions and approximations are required,
due to the infinite nature of input streams (as
we will detail in the correctness in practice sub-
section). We then conclude by presenting a
software developed to automatically assess the
correctness of RSP engine answers and carried
in the CSRBench suite.

Correctness based on RSP-QL
The RSP-QL model is built to capture the query
model and the operational semantics of existing
RSP systems. This model is able to reproduce
each result of the targeted systems. Anyway, as
explained in the previous section, each system C
has a different behavior, and the relative queries
are not fully-defined RSP-QL queries. It is pos-
sible to exploit that analysis to derive a set of
well-defined RSP-QL queries and determine if
the answer is correct.

Definition 25. Let us denote with C an RSP
system (C-SPARQL, CQELS or SPARQLstream),
with q a continuous query of C, and with Q the
set of RSP-QL queries that can be derived by q
(shortly Q = rspqlQueries(q, C)). The answer
AnsC(q), produced by continuously executing
q on C, is correct with regards to the RSP-
QL model iff exists a query Q ∈ Q such that
AnsC(q) = Ans(Q).

Ans(Q) is the output of Q as defined in the
RSP-QL evaluation subsection. To complete the
definition, we need to explain how to build the
rspqlQueries function. The function is strictly
related to the peculiarities highlighted previ-
ously: given a continuous query q for C, it
composes RSP-QL queries by adding to q infor-



18 RSP-QL SEMANTICS

mation that can be elicited by the operational
semantics of C.
Given an RDF stream processor C and a query

q, the function rspqlQueries generates a set of
RSP-QL queries Q. For each query Q of Q,
the algebraic expression and the query form are
the same of q. The set of evaluation time in-
stants is set accordingly to the report policy of
C.Regarding the dataset, we analysed two main
differences between the RSP-QL query model
and the RDF stream processor systems. In the
previous section we showed that each system
has syntactical constraints that limit the shape
of the dataset, and then we discussed the fact
that t0 instants are system-related parameters
and they are out of control of the query designer.
While the former does not influence the number
of queries in Q, the latter generates multiple
alternative sliding window operators, and conse-
quently, different queries. The sliding windows
operators of the queries in Q are built in the
following way:
• for each sliding window Wi in q, determine
the set T 0

Wi
of possible t0 instants – the

time instants on which the first window of
Wi opens:

T 0
Wi

= {a, a+ 1, . . .},
where a is the query registration time.

• compute the set Z with the combinations
of the starting time instants of the sliding
windows in q:

Z =
n∏
i=1

T 0
Wi

Each element of the Z set is a vector z of
dimension n (where n is the number of window-
ing operators in q). The number of vectors in
Z is the number of queries that rspqlQueries
generates. In particular, given the j-th vector
zj ∈ Z, the query Qj has a dataset with n slid-
ing windows. For each value zji of the vector zj
(i ∈ [1, n]), a sliding window Wi is defined as:

Wi(αi, βi, zji),
where (αi, βi) are the width and slide parameters
that define the i-th sliding window of q.

Correctness in practice
Definition 25 gives a notion of correctness assess-
ment for RSP systems. The idea is to compare
the output of a system with the ones generated
through the RSP-QL query model, and check
if the answers match. Anyway, the notion is
theoretical and it is not feasible in reality:

1. the continuous and infinite nature of data
streams do not allow determining whether
two answers match. The infinite input
lengths imply undecidability in the match-
ing problem – it is possible to determine if
inputs are different, but it requires infinite
time to determine if they are equal;

2. the rspqlQueries function generates a
RSP-QL query for each possible combina-
tion of t0 values, but those combinations
are infinite (sliding windows can start to
work at any time instant).

We start to analyse the second problem. To
cope with the infinite t0 combinations, we can
exploit the following property of the sliding win-
dow operator.

Theorem 1. Let’s consider two sliding win-
dow operators W′ and W′′, defined respectively
through (α, β, a) and (α, β, a+nβ), where a ∈ T
is a time instant and n a natural number. The
sliding windows are applied to a generic stream
S and generate two time-varying graphs G′W and
G′′W. For each time instant t ∈ T on which G′′W
is defined, i.e. t ≥ a+ nβ, it holds:

G′W(t) = G′′W(t)

The proof is straightforward. Intuitively, the
slide parameter introduces a periodicity in the
window: windows generated by sliding windows
with the same width and slide parameters, and
t0 values of a and a+ nβ overlap, capturing the
same portions of the streams. Consequently the
results will be the same from the starting time
of the most recent sliding window.
We can exploit this property to limit the num-

ber of the t0 combinations and consequently



RSP-QL SEMANTICS 19

the number of queries that rspqlQueries gener-
ates. Exploiting this property, we can modify
the rspqlQueries function in the following way:
given a query q with n sliding windows, we define
the set T 0

Wi
of the i-th sliding window as:

T 0
Wi

= {a, a+ 1, . . .}

Exploiting the property, we can bound the set:

T 0
Wi

= {a, a+ 1, . . . , a+ βi − 1}

Now the set Z (the Cartesian product of the T 0
Wi

sets) is bound and the rspqlQueries function
generates a finite number of RSP-QL queries.
We need also to introduce a constraint in Def-

inition 25, to set a time instant on which the
correctness assessment starts.

Definition 26. The answer AnsC(q), produced
by continuously executing q on C, is correct
with regards to the RSP-QL model iff from a
time instant ts, there exists a query Q ∈ Q such
that AnsC(q) = Ans(Q). ts is:

ts = max{tj|tj ∈ T 0
W1 ∪ . . . ∪ T

0
Wn
}

This new definition sets a time instant on
which the comparison starts. In particular, it
cuts off the transient state of the query answer-
ing (the registration and the set up of the query),
and it focus on the stable phase of the process.
It is a suitable assumption, due to the fact that
in stream processing it is common to focus on
behaviour of the system when system is in a
stable state (Arasu et al., 2004).
Regarding the problem of the infinite input

length, it is necessary to bind the length of the
stream. This bound has to guarantee that the
inputs are long enough to discover long-term
running problems (burn-in tests (Kuo, Chien, &
Kim, 1998)) of the RDF stream processors, e.g.
windows misalignment over the data streams.

RSP-QL implementation in CSR-
Bench
RSP-QL is at the basis of the oracle provided
by CSRBench (Dell’Aglio, Calbimonte, et al.,

2013) and used to automatically verify the re-
sults of the tests. CSRBench is an extension
of SRBench (Zhang et al., 2012) to tackle the
correctness assessment of RSP engine outputs.
In addition to the oracle, CSRBench supplies
data streams and a set of parametrised queries3
to be used to perform tests.
The oracle is built on the top of the Sesame

framework and it is available as open source
project4. The idea behind its architecture is to
simulate the evaluation of a continuous query
over a stream by using a SPARQL 1.1 engine
and an a RDF store. The goal of the oracle
is to verify if the answer provided by an RSP
engine is correct: to assess it, the oracle adopts
the correctness as defined in Definition 25. The
current prototype manages RSP-QL datasets
composed by one time-based sliding window over
a stream; it supports the whole SPARQL 1.1
query language, and it implements the three
R2S operators Rstream, Istream and Dstream.
Given the input stream S, a query q, an RSP
engine C, and the result AnsC(q) provided by C,
the oracle verifies (off-line) if AnsC(q) is correct.
To do it, the oracle stores the RDF stream S
in a RDF store and transforms the continuous
query q in set of SPARQL 1.1 queries. Then, it
evaluates the queries over the data in the RDF
store, simulating the continuous evaluation of q
and generating the set of possible answers that
can be produced: if one of them matches with
AnsC(q), the result of C is correct.
The oracle operates in two main stages, as de-

picted in Figure 6: (i) the set up of the dataset,
and (ii) the execution and comparison of the
results.
The main goal of the first stage is to produce

a set of RDF graphs to simulate the real RDF
stream S and the sliding windows over it. To
do it, the oracle creates a metadata RDF graph
gm and a set of data RDF graphs {gt}, defined
as follows. The RDF stream S is composed by
a sequence of timestamped triples of the form
(d, t). For each timestamp t in S, a correspond-
ing RDF graph gt is created, and the following
metadata triple is added in gm:

gt :hasTimestamp t



20 RSP-QL SEMANTICS

Figure 6. : Oracle for RDF Stream query results
correctness checking.

Finally, for each t, the triples of S with times-
tamp t are imported into gt, i.e. gt = {d |
(d, t) ∈ S}.

Once the RDF stream is stored as a set of
RDF graphs, the oracle can execute the contin-
uous query q over it in the second step. q is
transformed into a set of SPARQL 1.1 queries
{qi}, one for each possible zi ∈ Z, i.e. one for
each starting time instant (i.e. one for each
element of the set Z). Due to the fact that q has
only one sliding window W with slide parameter
β, it follows:

Z = T 0
W = {a, a+ 1, . . . , a+ β − 1}

Next, qi is executed: qi is associated with a se-
quence of RDF datasets representing the window
contents: the sequence is defined accordingly to
the t0 value of zi, to the sliding window definition
and the report policy of C. Given the evaluation
time te, the selection of the current window con-
tent is made by selecting one or more graphs gt,
one for each time instant t in the active window
at te. The results of the evaluation are then
combined as required by the streaming operator
of q. This execution simulates a continuous
query evaluation over a limited amount of time.
Finally, the result produced by C is compared
with the results produced by the oracle: if there
is a query qi such that AnsC(q) = Anso(qi), then
the oracle produces a positive result.

CONCLUSIONS

Pervasive and ubiquitous computing is gaining
widespread adoption, and it is one of the ingre-
dients for enabling the Web of Things. In this
spectrum, semantics plays a key role in enabling
interoperability and facilitating discovery and
accessibility of data coming from sensors, mobile
devices, people and other ‘things’. However, the
existing standards for representing semantically
annotated data on the Web lack the necessary
foundations for supporting the dynamic nature
of streaming data that is produced in the Inter-
net of Things. In order to solve this problem,
several extensions to the RDF model and the
SPARQL query language have been produced in
the past years, and these extensions have also
been implemented by a corresponding number
of systems (RSP systems). As we have detailed
in this paper, the existing systems follow differ-
ent operational semantics that make it hard to
compare seemingly equivalent queries, and that
make it difficult to assess the correctness of an
RSP system in general.
In this paper, we presented RSP-QL semantics,

a formal query model that extends SPARQL for
evaluating continuous queries over RDF streams,
whose correctness can be formally assessed and
that can actually model existing RSP systems,
namely C-SPARQL, CQELS and SPARQLstream.
The contributions of this work can be sum-
marised as follows. First, we have formally ex-
tended RDF to include time annotations, which
are necessary to define an RDF stream. More-
over, and beyond previous works, we have intro-
duced the notion of instantaneous graphs, which
help bridging the static RDF world with the
RDF stream world for query processing. With
this RDF stream model, we have defined the se-
mantics of RSP-QL, a query language extension
to SPARQL for RSP, whose correctness can be
formally assessed and that can capture the pro-
cessing model of existing systems, constituting
a unifying and comprehensive model for RSP.
Furthermore, we have shown in theory and in
practice how this model can be used not only
to explain the operational semantics of existing
RSP systems, but also to help assessing the



RSP-QL SEMANTICS 21

correctness of the results they provide. To do so,
we have proposed a formulation for correctness
and an abstract design of an oracle that uses
it to determine if the actual continuous query
results of a certain engine are correct or not.
The proposed formalisation constitutes a con-

tribution to ongoing efforts in the semantic web
community to provide standardised and agreed
definition of extensions to RDF and SPARQL
for managing data streams5. It also provides
foundations for defining RSP benchmarks that
take into account the often disregarded prob-
lem of correctness, and possible trade-offs with
performance, as well as setting the initial steps
towards RSP integration.
In the future, we envision a widespread adop-

tion of RSP-based solutions in different domains,
specially under the umbrella of the Internet of
Things (IoT). The proposed model can certainly
help providing the foundations for well-defined
query processors that can interoperate through
common query interfaces, even if they follow
different architectural approaches. This will
allow creating an ecosystem of RSP compati-
ble systems that take advantage of semantics
and Linked Data to interact. The challenges
we foresee are manifold. So far we have only
scratched the surface of an RSP-QL model that
does not consider reasoning, which is one of
the key advantages of using semantic models.
Also, IoT data is typically expected to include
unavoidable volumes of noisy data, which may
perturb the notion of correctness of query an-
swering. Also, in this work we have not taken
into account external factors that may have a
nontrivial impact over query processing, such
as out-of order arrival of data items, arbitrary
delays in query operators and other issues that
may arrive in real-life systems under stress.

Acknowledgments

Supported by the Nano-Tera.ch Opensense2
project, the IBM faculty-award 2013 granted
to prof. E. Della Valle and the IBM PhD Fel-
lowship Award 2014 granted to D. Dell’Aglio.

REFERENCES

Anicic, D., Fodor, P., Rudolph, S., & Stojanovic,
N. (2011). EP-SPARQL: a unified language for
event processing and stream reasoning. In S. Srini-
vasan, K. Ramamritham, A. Kumar, M. P. Ravin-
dra, E. Bertino, & R. Kumar (Eds.), Www (p. 635-
644). ACM.

Arasu, A., Babu, S., & Widom, J. (2006). The CQL
continuous query language: semantic foundations
and query execution. VLDB J., 15(2), 121-142.

Arasu, A., Cherniack, M., Galvez, E. F., Maier, D.,
Maskey, A., Ryvkina, E., . . . Tibbetts, R. (2004).
Linear Road: A Stream Data Management Bench-
mark. In M. A. Nascimento, M. T. Özsu, D. Koss-
mann, R. J. Miller, J. A. Blakeley, & K. B. Schiefer
(Eds.), Vldb (p. 480-491). Morgan Kaufmann.

Babu, S., & Widom, J. (2001). Continuous Queries
over Data Streams. SIGMOD Record, 30(3), 109-
120.

Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E.,
& Grossniklaus, M. (2010). C-SPARQL: a Continu-
ous Query Language for RDF Data Streams. Int. J.
Semantic Computing, 4(1), 3-25.

Bolles, A., Grawunder, M., & Jacobi, J. (2008).
Streaming SPARQL - Extending SPARQL to Pro-
cess Data Streams. In S. Bechhofer, M. Hauswirth,
J. Hoffmann, & M. Koubarakis (Eds.), Eswc (Vol.
5021, p. 448-462). Springer.

Botan, I., Derakhshan, R., Dindar, N., Haas, L. M.,
Miller, R. J., & Tatbul, N. (2010). SECRET: A
Model for Analysis of the Execution Semantics of
Stream Processing Systems. PVLDB, 3(1), 232-
243.

Calbimonte, J.-P., Jeung, H., Corcho, Ó., & Aberer,
K. (2012). Enabling query technologies for the se-
mantic sensor web. Int. J. Semantic Web Inf. Syst.,
8(1), 43-63.

Chen, J., DeWitt, D. J., Tian, F., & Wang,
Y. (2000). NiagaraCQ: A Scalable Continu-
ous Query System for Internet Databases. In
W. Chen, J. F. Naughton, & P. A. Bernstein (Eds.),



22 RSP-QL SEMANTICS

Proceedings of the 2000 acm sigmod international
conference on management of data, may 16-18,
2000, dallas, texas, usa (p. 379-390). ACM.

Compton, M., Barnaghi, P. M., Bermudez, L.,
Garcia-Castro, R., Corcho, Ó., Cox, S., . . . Taylor,
K. (2012). The SSN ontology of the W3C semantic
sensor network incubator group. J. Web Sem., 17,
25-32.

Cugola, G., & Margara, A. (2012). Processing flows
of information: From data stream to complex event
processing. ACM Comput. Surv., 44(3), 15.

Cyganiak, R., Wood, D., & Lanthaler, M.
(2014). RDF 1.1 Concepts and Abstract Syntax.
http://www.w3.org/TR/rdf11-concepts/. Retrieved
from http://www.w3.org/TR/rdf11-concepts/

Dell’Aglio, D., Balduini, M., & Della Valle, E.
(2013). On the need to include functional test-
ing in RDF stream engine benchmarks. In The
10th eswc 2013 conference workshops: Bersys2013,
aimwd2013 and usewod2013.

Dell’Aglio, D., Calbimonte, J.-P., Balduini, M., Cor-
cho, Ó., & Della Valle, E. (2013). On Correctness in
RDF Stream Processor Benchmarking. In H. Alani
et al. (Eds.), International semantic web conference
(2) (Vol. 8219, p. 326-342). Springer.

Gutiérrez, C., Hurtado, C. A., & Vaisman, A. A.
(2005). Temporal RDF. In A. Gómez-Pérez & J. Eu-
zenat (Eds.), Eswc (Vol. 3532, p. 93-107). Springer.

Harris, S., & Seaborne, A.
(2013). SPARQL 1.1 Query Language.
http://www.w3.org/TR/sparql11-query/.

Komazec, S., Cerri, D., & Fensel, D. (2012). Spark-
wave: continuous schema-enhanced pattern match-
ing over rdf data streams. In F. Bry, A. Paschke,
P. T. Eugster, C. Fetzer, & A. Behrend (Eds.), Debs
(p. 58-68). ACM.

Kuo, W., Chien, W.-T. K., & Kim, T.
(1998). Reliability, yield, and stress burn-in:

A unified approach for microelectronics systems
manufacturing & software development. Springer.
Motik, B. (2012). Representing and querying valid-
ity time in rdf and owl: A logic-based approach. J.
Web Sem., 12, 3-21.

Pérez, J., Arenas, M., & Gutierrez, C. (2009). Se-
mantics and complexity of SPARQL. ACM Trans.
Database Syst., 34(3).

Phuoc, D. L., Dao-Tran, M., Parreira, J. X., &
Hauswirth, M. (2011). A Native and Adaptive Ap-
proach for Unified Processing of Linked Streams and
Linked Data. In L. Aroyo et al. (Eds.), International
semantic web conference (1) (Vol. 7031, p. 370-388).
Springer.

Pugliese, A., Udrea, O., & Subrahmanian, V. S.
(2008). Scaling RDF with time. In J. Huai et al.
(Eds.), Www (p. 605-614). ACM.

Urbani, J., Margara, A., Jacobs, C. J. H., van
Harmelen, F., & Bal, H. E. (2013). DynamiTE:
Parallel Materialization of Dynamic RDF Data. In
H. Alani et al. (Eds.), International semantic web
conference (1) (Vol. 8218, p. 657-672). Springer.

Zhang, Y., Pham, M.-D., Corcho, Ó., & Calbi-
monte, J.-P. (2012). Srbench: A streaming rd-
f/sparql benchmark. In P. Cudré-Mauroux et al.
(Eds.), International semantic web conference (1)
(Vol. 7649, p. 641-657). Springer.

FOOTNOTES
1In DSMS literature this window is known as active
window; we changed its name in order to clearly
distinguish it from the active graph notion

2Consequently, Ψ(ti) and Ψ(tj) exists and Ψ(tk) is
undefined ∀tk ∈ T such that tj−1 < tk < tj .

3The description of the queries is available at:
http://www.w3.org/wiki/CSRBench

4Cf. https://github.com/dellaglio/csrbench-oracle
5Interested readers are invited to learn more visiting
http://www.w3.org/community/rsp/


