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Abstract. Benchmarks like LSBench, SRBench, CSRBench and, more
recently, CityBench satisfy the growing need of shared datasets, ontologies
and queries to evaluate window-based RDF Stream Processing (RSP)
engines. However, no clear winner emerges out of the evaluation. In this
paper, we claim that the RSP community needs to adopt a Systematic
Comparative Research Approach (SCRA) if it wants to move a step
forward. To this end, we propose a framework that enables SCRA for
window based RSP engines. The contributions of this paper are: (i) the
requirements to satisfy for tools that aim at enabling SCRA; (ii) the
architecture of a facility to design and execute experiment guaranteeing
repeatability, reproducibility and comparability; (iii) Heaven – a proof
of concept implementation of such architecture that we released as open
source –; (iv) two RSP engine implementations, also open source, that
we propose as baselines for the comparative research (i.e., they can serve
as terms of comparison in future works). We prove Heaven e�ectiveness
using the baselines by: (i) showing that top-down hypothesis verification
is not straight forward even in controlled conditions and (ii) providing
examples of bottom-up comparative analysis.

1 Introduction

The Stream Reasoning (SR) [10] community agrees on the principle that Informa-
tion Flow Processing approaches [9] and reasoning techniques can be coupled in
order to reason upon rapidly changing information flows (for a recent survey see
[18]). Currently, a W3C community group1 is working towards the standardization
of the following basic SR technologies:

– RDF Streams, which were introduced in [10], later on picked up in [16, 2] and
approached as virtual RDF stream in [8].

– Continuous extension of SPARQL such as, in chronological order, C-SPARQL [5],
SPARQLstream [8], CQELS-QL [16] and EP-SPARQL [2, 13].

– Reasoning techniques optimized for the streaming scenario such as, in chrono-
logical order, Streaming Knowledge Bases [27], IMaRS [6], a stream-oriented
version of TrOWL [21], EP-SPARQL [2] and RDFox [20].

1 http://www.w3.org/community/rsp/
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These concepts gave birth to a new class of systems, collectively called RDF
Stream Processing (RSP) engines, which proved SR feasibility and drew the
attention of the community to their evaluation.

The goal of a domain specific benchmark is to foster technological progress
by guaranteeing a fair assessment. For window-based RSP engines - the class of
systems in the scope of this paper - RDF Streams, ontologies, continuous queries
and performance measurements were proposed in LSBench [17], SRBench [28],
CSRBench [11] and CityBench [1]. However, existing benchmarks showed no
absolute winner and it is even hard to claim when an engine outperforms another.

In this paper, we argue that SR needs to identify the situations under which
an engine A works better than an engine B, either quantitatively, i.e. focusing
on a very aspect of the performance, or qualitative, i.e. classifying the behavior
by observing the dynamics. This approach is known as Systematic Comparative
Research Approach (SCRA) [15] and it is adequate when the complexity of the
study subject makes it hard to formulate top-down hypothesis. Consequently, we
formulate our research question as:

How can we enable a SCRA for window based RSP engines?

Our answer to this research question comprises:
1) A set of requirements to satisfy in order to enable a SCRA.
2) A general architecture for an RSP engine Test Stand; a facility that: (i)

makes possible to design and systematically execute experiments; (ii) provides a
controlled environment to guarantee repeatability and reproducibility of experi-
ments; (iii) collects performance measurements while the engines are running;
and (iv) allows us to comparatively evaluate the engines post-hoc.

3) Heaven, a proof-of-concept implementation that we released open source2,
which improves the one proposed in [25] as explained in Section 5.

4) Two baseline RSP engine implementations that we propose as terms of
comparison, since they are the kind of “simplified complex cases that combine
known properties” advocated in SCRA [15] to highlight di�erences and similarities
among real cases. They are released open source, too2.

Demonstrating that the paper contributions positively answer our research
question requires us to: (i) highlight that top-down hypothesis confirmation is
not straight forward even in a controlled environment and when the observed
RSP engines are as simple as the baselines are; (ii) prove Heaven e�ectiveness by
showing the relevance of the bottom-up analysis that it enables. To this extent,
we first executed 14 experiments that involve the baselines as subjects and we
showed that we cannot confirm the following two hypotheses, which have been
already investigated top-down by the SR community [21, 26, 12, 20]:

Hp.1 Materializing from scratch the ontological entailment of the window con-
tent, each time it slides, is faster than the incremental maintenance of the
materialization, when changes are large enough (e.g. greater than 10%)

2 https://github.com/streamreasoning/heaven
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Hp.2 Dually, if changes are small (e.g. less than 10%), the incremental main-
tenance of the materialization of the the window content ontological
entailments, each time it slides, is faster than materializing it from scratch.

Then, we show some example of the bottom-up analysis that our approach
enables. This part of our investigation is lead by four questions:

Q.a Qualitatively, is there a solution that always outperforms the others?
Q.b If no dominant solution can be found, when does a solution work better

than another one?
Q.c Quantitatively, is there a solution that distinguishes itself from the others?
Q.d Why does a solution perform better than another solution under a certain

experimental condition?

The remainder of the paper is organized as follows. Section 2 provides the
minimum background knowledge required to understand the content of the paper.
Section 3 presents the definition of RSP experiment and the requirements of a
software framework to enable SCRA for RSP engines (i.e an architecture and at
least a baseline). Section 4 shows the architecture of the RSP engine Test Stand
and its workflow. Section 5 reports the implementation experience of Heaven.
Section 6 describes two RSP engines baseline. Section 7 shows the evaluation
of Heaven. Section 8 positions this paper within the state-of-the-art of RSP
benchmarking. Finally, in Section 9, we come to conclusions.

2 Background

Stream Reasoning (SR) [10] is a novel research trend which focuses on com-
bining Information Flow Processing (IFP) [9] engines and reasoners to perform
reasoning on rapidly changing information. IFP engines are systems capable to
continuously process Data Streams, that are potentially infinite sequences of
events. The data streams considered in SR are the RDF Streams, where events
are described by timestamped RDF data. For example, if at time 1, an event e1
states that a MicroPost :tweet1 is posted by :alice, while at time 5, a data item e2
states that :instagram_post2 is posted by :bob. The data stream ((e1, 1), (e2, 5))
can be represented by the RDF Stream:
(:tweet1 sioc:has_creator :alice), 1
(:instagram_post2 sioc:has_creator :bob), 5

Most of the RSP query languages adopt a Triple-Based RDF Stream Model, i.e.,
events are represented by a single timestamped RDF statement. C-SPARQL [5],
CQELS-QL [16] and SPARQLstream [8] are examples of this class of languages.
However, a Graph-Based RDF Stream Model is possible and has been recently
adopted by the RSP W3C group. An example of engine that adopts the Graph-
Based RDF Stream model is SLD [4], that uses RDF graphs as a form of
punctuation [23] to separate the events in the stream.

The IFP query languages and their processing methods can be grouped in
two main membership classes:
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– Complex Event Processing (CEP) engines that validate incoming prim-
itive events and recognize patterns upon their sequences.

– Data Stream Managements Systems (DSMSs) [3] that exploit rela-
tional algebra to process portions of the data stream captured using special
stream-to-relation (S2R) operators.

In this work, we target a class of Stream Reasoners known as window-based
RDF Stream Processing (RSP) engines, inspired to DSMSs. The key operators
of this class of engines are the S2R ones and, in particular, the sliding window
operators. They allow to cope with the infinite nature of streams. Intuitively,
a sliding window creates a view, named active window, over a portion of the
stream that changes (slides) over time. Time-based sliding windows are
sliding windows that create the active window and slide it accordingly to time
constraints. They are defined by the width ω – i.e., the time range that has to
be considered by the active window – and the slide β – i.e. how much time the
active window moves ahead when it slides.

As advocated in the early works on Stream Reasoning [10, 27], the most
simple approach to create a window-based RSP engine is pipelining a DSMS
with a reasoner. For example, the C-SPARQL engine3 uses Esper as DSMS and
Jena as framework to manage RDF and reasoning over the window content. The
C-SPARQL engine processes C-SPARQL queries under RDFS entailment regime4.
For instance, the following C-SPARQL query asks to report every day (see STEP
15 min) the people mentioned during the last week in the stream of those who
have published a paper (see RANGE 1d):
SELECT ?micropost
FROM STREAM <http://www.ex.org/socialStream> [RANGE 1d STEP 15 min]
WHERE {?micropost a :MicroPost}

The requested information is not explicitly stated in the RDF stream exem-
plified above, but being the range of the sioc:has_creator property a :MicroPost,
an RDFS reasoner can deduce that :tweet1 and :instagram_post2 are of type
:MicroPost and, thus, they belong to the answer of the query.

Other examples of window-based RSP engines are Morphstream [8] and
CQELS [16], that adopt di�erent approaches: the former is a native imple-
mentation of a window-based RSP engine, to achieve performance and adaptivity;
the latter adopts an OBDA-like approach to rewrite the continuous query in a
query to be DSMS and to be evaluated over a (non-RDF) data streams.

3 Notion of RSP Experiment and SCRA Requirements

An experiment is a test under controlled conditions that is made to demonstrate
a known truth, examine the validity of a hypothesis5, and that guarantees results
3 https://github.com/streamreasoning/CSPARQL-engine
4 http://www.w3.org/TR/sparql11-entailment/#RDFSEntRegime
5 http://bit.ly/experiment-definition
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reproducibility, repeatability, and comparability. This notion is not new in the
RSP benchmarking state-of-the-art [1], but a formal definition is still missing.

We define an RSP Experiment as a tuple < E , T , D, Q, K > where:
– E is the RSP engine used as subject in the experiment;
– T is an ontology and any data not subject to change during the experiment;
– D is the description of the input data streams;
– Q is the set of continuous queries registered into E ; and
– K is the set of key performance indicators (KPIs) to collect.

The result of an RSP Experiment is a report R that contains the trace of the
RSP engine processing for the entire duration of the experiment.

On these definitions and on the notions of Comparability, Reproducibility and
Repeatability6, we elicit the requirements for the architecture of a test stand that
enables SCRA starting from an RSP Experiment.

Comparability refers to the nature of the experimental results R and their
relationship with the experimental conditions. It requires that the test stand is
[R.1] RSP engine agnostic, i.e. as long as the experimental conditions do not
change, the results must be comparable, independently from the tested RSP
engine. To this end, the report R has to record at least: (i) the data stream (or
Stimulus) sent to R; (ii) the application time of the Stimulus; (iii) the system time
at which the Stimulus is sent; (iv) any KPIs to be measured before E processes
the Stimulus; (v) the Response, if any, of E to the Stimulus; (vi) the system time
at which the Response, if any, is sent; (vii) any KPIs to be measured after E .

Reproducibility refers to measurement variations on a subject under changing
conditions. It requires that the test stand is: [R.2] data independent, which means
allowing the usage of any data stream and any static data (e.g., those proposed
in [1, 11, 17, 28]); and [R.3] query independent, which means allowing the usage of
any query from users’ domains of interest (e.g., those proposed in [1, 11, 17, 28])

Repeatability refers to variations on repeated measurements on a subject
under identical conditions. It requires that the test stand [R.4] minimizes the
experimental error, i.e., it has to a�ect the RSP engine evaluation as less as
possible and in a predictable way.

All these experiment properties together require the test stand to be [R.5]
independent from the measured key performance indicators (KPIs), i.e., the KPIs
set has to be extensible. According to [22] a set of meaningful KPIs comprises: (i)
query-execution-latency – the delay between the system time at which a Stimulus
is sent to the RSP engine and the system time at which a Response occurs, if
any; (ii) throughput – the number of triples per unit of time processed by the
system; (iii) memory usage – the actual memory consumption of the RSP engine;
(iv) Completeness & Soundness of query-answering results w.r.t the entailment
regime that the RSP engine is exploiting.

Last, but not least, due to its case-oriented nature, SCRA exploits naive
terms of comparison to draw research guidelines (Section 1). For this reason, it
is necessary to identify at least one [R.6] RSP engine baseline, i.e., the minimal
meaningful approaches to realize an RSP engine.
6 http://bit.ly/experiment-properties
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Fig. 1: RSP Test Stand modules and workflow.

4 Architecture and Workflow of RSP Test Stand

In this section, we present the architecture of a Test Stand for window based
RSP engines (namely RSP Test Stand) - a software facility to enable SCRA - it
components and how they interact during the execution of an RSP Experiment.

The RSP Test Stand consists of four components, whose position within
the architecture is presented in Figure 1:

– The Streamer sets up the incoming streams w.r.t to D;
– The RSP Engine represents the RSP engine E , initialized with T and Q;
– The Receiver continuously listens to E responses to Q; and,
– The Result Collector compiles and persists the report R.

During the execution, six kind of events are exchanged between the compo-
nents: (i) RSP Experiment - the top-level input, defined in Section 3, used to
initialize the test stand components; (ii) Stimulus - a portion of the incoming
data streams in which all the data have the same application time and whose
complete specification is included in D (e.g., a real word data stream, a recorded
data stream as those proposed in [1, 11, 17, 28]), a synthetic data stream gener-
ated in order to stress the engine); (iii) Response - the answer of the queries
specified in Q; (iv) Test Stand Input - the Stimulus and the performance
measurements collected as specified in K just before Stimulus creation; (v) Test
Stand Output - the Response and the performance measurements collected
as specified in K just after the Response creation; (vi) Test Stand Report -
the carrier for the data that the Result Collector has to persist.

Figure 1 also shows also how the Test Stand components have to interact
during the experiment execution. In step (0), the Test Stand receives an RSP
Experiment and it initializes its modules (dashed arrows): it loads the engine E
and registers into it T and the query-set Q; it sets up the Streamer, according
with the incoming streams definition D; it connects the engine to the Receiver
and it initializes the Result Collector to receives and saves the test stand
outputs. The Test Stand loops between steps (1) and (4), until the experiment
ends. In step (1), the Streamer creates and pushes a Stimulus to the engine
E . In step (2), the Test Stand intercepts the Stimulus of step (1), collects
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the performance measurements specified in K (e.g, it starts a timer to measure
latency and it calculates the memory consumption of the system) and it sends
a Test Stand Input to the Result Collector. In step (3), E receives a
Stimulus, it processes it according with the query-set Q and its own execution
semantics [13] (i.e., we consider the RSP engine as a black box). Step (4) occurs
when E outputs a Response and sends it to the Receiver. In step (5), the Test
Stand receives a Response from the Receiver, takes some measurements (e.g.,
it stops the timer and calculates the memory consumption of the system again),
it creates and sends a Test Stand Output to the Result Collector. Finally,
in step (6), the Result Collector persists all the collected data as an Test
Stand Report.

5 Implementation Experience

In this section, we present Heaven, an implementation of the RSP Test Stand
architecture described in Section 4. In the following, we show how Heaven satisfies
the requirements we posed in Section 3.

As a consequence to requirements [R.1,R.2,R.3], we implement Heaven with
an extensible design, i.e., each module can be replaced with another one with
the same interface, but di�erent behavior, without a�ecting the system stability.

To satisfy [R.2] we developed a Streamer, namely RDF2RDFStream, that
can define di�erent types of workload. In the current implementation it allows
to define (i) flows that remain stable over time; (ii) flows that remain stable
for a while, then suddenly increase; and (iii) flows that change according to a
distribution (e.g, Poisson or Gaussian).

The RDF2RDFStream generates streams according with the D parameter,
which comprises: DS the actual data to stream; M the data model used by
the stream (e.g. RDF Streams encoded as timestamped RDF Triples or as
timestamped RDF Graphs); and the function F that describes the Stimulus
content over time. The RDF2RDFStream (1) retrieves and parses the data from
the specified file; (2) it creates a Stimulus w.r.t the specified data model M ; it
exploits the function F to determine the cardinality of the triple-set to stream;
(3) it attaches a non-decreasing application timestamps to the Stimulus which
is immediately pushed to the tested RSP engine E . The RDF2RDFStream does
not consider the semantic relation between triples, but it parse the incoming
data in order.

A clear limitation of Heaven regards the satisfaction of [R.4]. Due to our
choice of using Java for prototyping, we cannot explicitly control the memory
consumption. A fair workaround consist in implementing Heaven as single thread
and suspending the test stand while the RSP engine is under execution. We also
reduced as much as possible the number of memory-intensive data structures
used in the RSP Test Stand and we limited the I/O operations.

According to [R.5], Heaven must be independent to the KPIs set. Currently,
it can measure query latency and memory consumption, but we developed it to
be easily extensible with other KPIs, e.g throughput or Quality of Service etc [22].
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Actually, Completeness and Soundness of the query results can be evaluated
post-hoc using the Report content persisted by the Result Collector as
shown in CSRBench [11].

6 Baseline RSP Engines

The final contribution of this work consists in two baseline, that implement the
minimal meaningful approaches to realize an RSP engine7 (see Section 2) and,
thus, they can be used as a initial terms of comparison to enable SCRA.

They currently support reasoning under the ρDF entailment regime [19] which
is the RDF-S fragment that reduces complexity while preserving its normative
semantics and core functionalities. This decision is motivated because we want
to provide reasoning capabilities and ρDF is the minimal meaningful task for a
Stream Reasoner [26].

The baselines cover two main design decisions: (i) data can flows from the
DSMS to the reasoner via snapshots (i.e. Figure 2-A) or di�erences ( Figure 2-B);
and (ii) they exploit absolute time, i.e. their internal clock can be externally
controlled [9].

Fig. 2: The architecture of the two baselines inspired
to the C-SPARQL engine (A) and of the two Incre-
mental ones inspired to TrOWL and RDFox (B).

Figure 2-A shows the
first approach, which is
similar to what the C-
SPARQL engine [7] does.
The DSMS produces a
snapshot of the active win-
dow content at each cycle
and the reasoner material-
izes it from scratch (according to the ontology T and the entailment regime);
then all the queries in Q are applied to the new materialization to generate the
responses. Figure 2-B shows the second approach, that is similar to what TrOWL
and RDFox [24, 20] do. The DSMS outputs the di�erences ∆+ and ∆− between
the active window and the previous one. ∆+ contains the triples that have just
entered in the active window, while ∆− contains the triples that have just exited
from the active window. The reasoner, using ∆+ and ∆−, incrementally maintains
the materialization over time.

Exploiting absolute time allows us to ensure the Completeness and Soundness
of baselines responses, since we can wait for the RSP engine to complete the
evaluation before sending the next Stimulus. In this way, the baselines cannot
be overloaded, they can only violate the responsiveness constrain (A exhaustive
reference is [9]). Moreover, we can observe the entire engine dynamics, because we
fully control the engine behavior and, thus, we can relate to any given Stimulus
with the relative Response even in stressing condition.

7 We implement the baselines pipelining Esper 5.38, a mature open source DSMS, with
the Jena 2.12.1 general purpose rule engine9, also open source.
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7 Evaluation

In this section, we demonstrate what we argued in the Section 1, i.e. (i) top-
down hypothesis confirmation is not straight-forward; and (ii) Heaven is e�ective
because it enables relevant bottom-up analysis. To this extent, we show how
to design a set of experiments setting up a controlled environment. We provide
evidences of the non-obvious evaluation of hypothesis Hp.1 and Hp.2 (presented
in Section 1) and we answer questions Q.a, Q.b, Q.c, Q.d for the baselines.

7.1 Experiment Design

Stimulus ω
Size .1s 1s 10s 100s 1000s
1 1 10 102 103 104

10 10 102 103 104

102 102 103 104

103 103 104

Table 1: The number of RDF
triples in the active window as a
function of the number of triples
in each Stimulus and the dura-
tion ω of the window. Note slid-
ing of the window β is 100 ms
and the application time unit is
100 ms, i.e., we send a Stimulus
each 100 ms.

According with RSP Experiment definition pre-
sented in Section 4, to prepare an experiment
we need to fill the tuple < E , D, T , Q, K >.

As E , the RSP engine to test, we consider
our baseline implementations.

We used RDF2RDFStream as Streamer,
that accepts in input any RDF file. We need to
stress the reasoning capabilities of the baseline
in a regular way and LUBM is a recognized
benchmark for the reasoning domain that has
been used before in the SR field [26]10. There-
fore, we configured D as follows: as dataset
DS we opted for LUMB [14]; as data model
M we opted for RDF Stream encoded as times-
tamped RDF Graphs; and as function F , since
we want to keep the data stream regular, we
chose one which keeps constant the number of triples in each Stimulus forming
the RDF Stream and we set the application time unit of 100 ms.

Coherently with E and D, we picked as T the ρDF subset of the LUBM TBox.
As normally assumed in SR research, we consider this TBox static, therefore, the
materialization of T is computed at configuration time.

As set of queries Q, we choose the query that continuously asks for the entire
materialization of the active window content w.r.t. T under ρDF entailment
regime. This query is the most general query that can be registered in E and
it is enough to support our claims. Indeed, adding more queries can only make
the complex situation (without clear winners), which we discuss in Section 7.2,
even more intricate. In di�erent experiments, we used variants of the this query,
fixing the sliding parameter to β = 100 ms and varying the total duration ω of
the window, as summarized in Table 1.
10 LUBM is the easiest choice in this context. Indeed, among the existing SR benchmarks

only SRbench includes queries that require reasoning, but the data streams do not
flow regularly. On the other hand, LUBM can be streamed regularly through the
RDF2RDF

Stream

without a�ecting the semantics. A research towards a better SR
benchmark focused on reasoning [22] is worthy, but is out of the scope of this paper.
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Finally, as KPIs set K, we measure the memory consumption and, since the
baselines allows to exploit the absolute time for the computation, the query
latency. To stress the baselines at maximum, we pushed the Stimuli in the
baselines as soon as the baselines end the previous computation, reducing the
probability of garbage collecting until the system finishes the free memory.

All experiment are 30000 Stimuli long and, each of them was executed 10
times on an 2009 iMac with 12Gb of RAM and 3.06GHZ with OSX 10.7.

7.2 Uncomfortable Truths in Hypothesis Verification

State-of-the-art results [1, 11, 17, 28] show that top-down hypothesis confirmation
is not straight-forward. This is still true even under the controlled experimental
condition we just defined and for already investigated hypothesis like Hp.1 and
Hp.2. In the following, we specify them more w.r.t the experimental setting and
we show how they are not trivially verified.

Hp.1 When ω = β i.e., the window contains only one Stimulus, the Naive approach
is always faster than the Incremental one.

Hp.2 When the number of changes ∆+ and ∆− (Section 6) is a small fraction of
the content of the window an Incremental approach is faster than the Naive
one.

(a) Latency
Stimulus ω
Size .1s 1s 10s 100s 103s
1 I I I I I
10 I I I I
102 I I I
103 N

(b) Memory
Stimulus ω
Size .1s 1s 10s 100s 103s
1 N N I I I
10 N N I I
102 I I I
103 I !

Table 2: Experiments comparison for average query latency (a) and average
memory consumption (b) of the baselines. I:Incremental, N:Naive, ": Even.
Assumption: approach A dominates B when A/B is grater than 5%. Highlighted
cells indicate where Hp.1 or Hp.2 are not confirmed.

Tables 2 (a) and (b) exploit the layout of Table 1 to compare respectively
average query latency and average memory consumption values of the two
approaches for all the 14 experiments. We assume that one approach dominates
the other one when the di�erences in performance measurements are greater than
the 5%.

Table 2-a seems to confirm Hp.2, but it only partially confirms Hp.1, because
while the Incremental approach wins in all the settings where it was expected,
the Naive one does not for two cases on four (first column).

The insights become more complex when we consider the memory consumption.
Not only we have results where either Hp.1 or Hp.2 are not verified, but the results
are not even coherent between memory consumption and the query latency.

Figure 3-A and Figure 3-B abstract information of Tables 2 in a dashboard
representation: on the x-axis we have average latency values and on the y-axis
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Fig. 3: Example of dashboard representation: average latency values on x-axis
reports, average memory values on the y-axis in logarithmic scale. w.r.t Table 1:
(a) Stimulus size = 1, ω=1s (b) Stimulus size = 1000, ω=1s

we have average memory values both in logarithmic scale. Figure 3-A shows a
precise ordering between the two baselines: the Incremental is the best in term
of latency while the memory consumption is quite similar. However, Figure 3-B
presents an inverted situation, even though the Incremental solution has still less
latency, their relative position is totally di�erent.

We stated that any domain specific benchmark aim at fostering technological
progress by guaranteeing a fair assessment, this means identify the best solution.
However, this evaluation, as well as results in RSP benchmarking state-of-the-art,
showed that this is not always possible: at this level of analysis, we can hardly
identify in which situation a solution dominates another one and, thus, we should
drill down the analysis to determine at least the situations where a solution
dominates another one.

7.3 Systematic Comparative Research Approach

Answering the questions we posed in Section 1 represents a first step toward a
SCRA, which does not refuse the top-down analysis, but extends it into a layered
methodology that aims at catching bottom-up di�erent aspects of the analysis.

Top down research tries to answer Q.a and Q.b applying the kind of analysis
we did to verify Hp.1 and Hp.2. The top layer (dashboard) summarizes the
performances of the benchmarked RSP engines into a solution space, where the
engines are ordered by the experimental results. This allows to qualitatively
identify the best solution (if such a dominance exists) and, thus, to answer Q.a.
Intermediate layers (see Table 2) answer Q.b focusing on both Inter Experiment
Comparisons – quantitatively contrasting the results of a single measurement in
di�erent experiments – and Intra Experiment Comparisons – pointing out the
relation between multiple measurements within an experiment.

However, Heaven allows also to answer Q.c and Q.d. With high level visual
comparisons we can contrast many RSP engine dynamics at once and identify
anomalies and/or patterns to answer Q.c. Table 3 shows how di�erently the
memory evolves over time in di�erent experiments just for one baseline (i.e,
incremental). Finally, finer grain visual comparisons allows to contrast di�erent
variables within an experiment, and highlight the presence of internal trade-o�s,
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Stimulus ω
Size .1s 1s 10s 100s 1000s

1

10

100

1000

Table 3: Pattern Identification in Memory for Incremental Baseline

Fig. 4: Experiment 11 - Stimulus Size = 10 - ω=1s - Incremental.
that may explain the surprising results we obtained previously. Indeed, Figure 4
is an example where we can observe that memory oscillations, probably due
to the garbage collection, clearly influence the query latency, slowing down the
system (see the latency spikes every time the memory is freed).

Enabling SCRA, by the means of Heaven, makes possible to point out how
memory and latency, as well as other KPIs, are related. For a deeper analysis of
the results, we invite interested readers to check out our technical report11.

8 Related works in RSP engines benchmarking

The state-of-the-art for RSP engine benchmarking currently comprises four
benchmarks [1, 11, 17, 28], summarized in Table 4 and a first attempt towards a
general architecture to systematically evaluate RSP engines [25].

LSBench [17] o�ers a social network data stream schema, the S2Gen gen-
erator, and 12 queries. It covers three classes of testing: i.e. a) query language
11 http://streamreasoning.org/TR/2015/Heaven/2015-results.pdf
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Data Stream Ontologies Queries Facility Baselines
LSBench [17] ! ! ! ! X
SRBench [28] ! ! !

reasoning

X X
CSRBench [11] ! ! ! X !
CityBench [1] ! ! ! ! X

Heaven X X X ! !
Table 4: RSP Benchmarking State of the art.!: provided, X: not-provided,
": partially-provided

expressiveness; b) maximum execution throughput and scalability in terms of
query number and static data size; c) result mismatch between di�erent engines
to assess the correctness of the answers.

SRBench [28] focuses on RSP engine query language coverage. It comprises 17
queries to cover three main use cases: (i) flow-data only (ii) flow and background
data and (iii) flow and GeoNames and DBpedia datasets. It also targets the
reasoning task testing, but not as a main use case. CSRBench [11] extends [28]
by addressing the correctness verification. It adds to the query set aggregated
queries, queries requiring to join triples with di�erent timestamp and parametric
sliding windows queries. Moreover, it provides an Oracle to automatically check
correctness of query results.

CityBench [1] provides a real world data streams from the CityPulse project12

(i.e., vehicle tra�c data, weather data and parking spots data); a synthetic data
streams about user location and air pollution. Real world static datasets about
cultural events are also included. [1] evaluates query latency, memory consumption
and result completeness as evaluation metrics. 13 continuous queries are available
to test the RSP engine. It also provides a testbed infrastructure for experiment
execution, that specifically targets smart city workloads and applications.

Table 4 shows the positioning of this work w.r.t [1, 11, 17, 28]. Di�erently from
the state-of-the-art, we do not propose new workloads, queries and ontologies,
but we target the evaluation approach itself. Our aim is to enable SCRA for
window based RSP engines rather than proposing yet another benchmark.

Moreover, it is worth to note that this work di�ers from the one we presented
in [25], because in this paper we provides a broader set of requirements, we revised
the architecture, we re-implement the proof of concept of the architecture; we
also introduce two baselines to be used as terms of comparison and we evaluate
the e�ectiveness of Heaven using them.

9 Conclusions

In this paper, we claimed that the RSP community needs to enable a Systematic
Comparative Research Approach for window-based RSP engines. To support
this claim and enable SCRA, we proposed: (i) set of requirements elicited on
the experiment definition; (ii) a general architecture for an RSP engine Test
Stand [25]; (iii) Heaven, a proof-of-concept of such architecture that is released
12 http://citypulse.insight-centre.org/
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as open source; and (iv) two baselines, i.e, the minimal meaningful approaches to
realize an RSP engine, because the SR community still miss well defined terms
of comparison that other communities have (e.g, machine learning algorithms).

We demonstrate the framework e�ectiveness running a set of experiments
that involve Heaven and the baselines.

We successfully showed that top-down hypothesis verification is not straight
forward by proving that, even when an RSP engines is extremely simple (i.e. the
baselines), it is hard to formulate verifiable hypothesis. We also proved Heaven
e�ectiveness by showing how it reduces the investigation biases, allowing to better
understand ambiguous results, by enabling to catch cross-layered insights.

Finally, we positioned this work in the state of the art of RSP benchmarking,
showing its novelty and the di�erences with similar solution [1, 25].

This work is towards an RSP Engine lab, an web-based environment where a
users can: (i) design an experiment, (ii) run it, (iii) visualize and (v) compare
the results. Therefore, we have to: (i) implement the adapting facade for the
RSP engines to test and (ii) include, in a experiments suite, existing workload,
ontologies and queries (e.g those of SRBench and LSBench and CityBench).
Finally the baselines will shepherd future RSP comparative researches, due to
the simplicity of their architectures, the availability of full modeled execution
semantics [12, 21] and their open source implementation that allows to fully
observe their dynamics. Therefore, we want to pursuit the baselines development.
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