
Planning Ahead: Stream-Driven Linked-Data Access
under Update-Budget Constraints

Shen Gao1, Daniele Dell’Aglio2, Soheila Dehghanzadeh3,
Abraham Bernstein1, Emanuele Della Valle2, Alessandra Mileo3

1Department of Informatics, University of Zurich, Switzerland
2DEIB, Politecnico di Milano, Italy

3INSIGHT Research Center, NUI Galway, Ireland

Abstract. Data stream applications are becoming increasingly popular on the web.
In these applications, one query pattern is especially prominent: a join between a
continuous data stream and some background data (BGD). Oftentimes, the target
BGD is large, maintained externally, changing slowly, and costly to query (both in
terms of time and money). Hence, practical applications usually maintain a local
(cached) view of the relevant BGD. Given that these caches are not updated as
the original BGD, they should be refreshed under realistic budget constraints (in
terms of latency, computation time, and possibly financial cost) to avoid stale data
leading to wrong answers. This paper proposes to model the join between streams
and the BGD as a bipartite graph. By exploiting the graph structure, we keep
the quality of results good enough without refreshing the entire cache for each
evaluation. We also introduce two extensions to this method: first, we consider a
continuous join between recent portions of a data stream and some BGD to focus
on updates that have the longest effect. Second, we consider the future impact of a
query to the BGD by proposing to delay some updates to provide fresher answers
in future. By extending an existing stream processor with the proposed policies,
we empirically show that we can improve result freshness by 93% over baseline
algorithms such as Random Selection or Least Recently Updated.

1 Introduction
Real-time processing of massive, dynamically generated stream-data has become increas-
ingly popular on the Web [18]. In stream processing, one common task is to enrich the
streams with external background data (BGD). This kind of tasks has to deal with two
V’s of “Big Data” at the same time: Velocity, the rapidly changing nature of the stream
data; Variety, integrating data from different sources1. RDF Stream Processing (RSP)
has provided necessary languages to declare this task. Current RSP languages, such as
C-SPARQL [3], SPARQLstream [4], and CQELS-QL [16], support complex queries that
involve both streams and remote BGD. However, these RSP engines are not optimized
for remote BGD access. Usually, they continuously fetch BGD to match newly arrived
stream data ignoring the communication and potential financial cost of such operations.
To improve BGD access, RSP engines may adopt local views (or caches), as done in
database systems [9]. However, the remote BGD is not always static. Indeed, even in the
mostly static linked-data realm, information changes [13]. Hence, the freshness of local

1 http://www.ibmbigdatahub.com/infographic/four-vs-big-data

2 S. Gao et al.

views in the RSP engine degrades over time as updates in BGD do not propagate to the
local view. To address this problem, RSP engines have to maintain the local view, by
identifying the out-of-date (or stale) data items and replacing them with the up-to-date
(or fresh) values retrieved from the remote. Examples of such updating behavior include
the identification of opinion makers in social media based on a stream of posts and
(slowly-changing) contact-networks as BGD or traffic prediction based on position data
fetched from mobile phones.

Maintaining a local view can take time. Given that a federated query evaluation
can spend up to 95% of its time on accessing remote data [19], query evaluation under
response time constraints becomes a major challenge. To ensure a certain response
time, only a limited number of remote accesses can be allowed. Additionally, BGD
providers may impose constraints such as API rate limits, e.g., Twitter2. Lastly, other
communication and financial constraints may have to be considered, since accessing
BGD can cost money, computation power or energy (in both the RSP engine and the
remote service). Returning to the above examples, computing updated network metrics
for opinion makers is computationally expensive, and fetching location updates from
cell phones burdens scarce battery power. In this paper, we consider these constraints as
a limited budget that restricts the number of BGD accesses. We study the problem of
how to utilize the limited budget so that it can provide fresher response to the query.

To optimally manage BGD accesses under realistic budget constraints, this paper
proposes to allocate budget only to carefully selected “important” data that could lead to
more fresh join results. Our algorithms exploit characteristics of the join between the
stream and the BGD to improve the response freshness. Specifically, our contribution is
threefold. First, we propose an algorithm that employs a bipartite graph to model the
join selectivity between stream and BGD. It favors the update of data items with a higher
selectivity within a budget constraint. This problem decomposes to two scenarios: one
can be tackled with a local optimal approach; a second is NP-hard requiring a greedy
heuristic approach. This encodes Hypothesis H1: A maintenance processes exploiting
join selectivity improves response freshness. Second, we extend the above model to
favor data items that have a longer impact on the response freshness, which leads to
hypothesis H2: Leveraging the definition of the sliding window and BGD change
frequencies can improve response freshness. Third, we explore the trade-off between
the current and future importance of data elements. We present an algorithm that exploits
the change frequencies, join selectivity, and the sliding window all together to delay
some current refreshes in favor of future, more important ones. It encodes hypothesis H3:
Considering both current and future evaluations for budget allocation can further
improve response freshness.

Outline: Section 2 introduces some background of RSP and BGD access. Section 3
reviews related work. Section 4 formalizes the problem. Our solutions and their opti-
mization are in Section 5. Section 6 provides evaluation results of our hypotheses on
both real and synthetic data sets.

2 https://dev.twitter.com/rest/public/rate-limiting

Stream-Driven Linked-Data Access 3

2 Background
An RDF stream S is a potentially unbounded sequence of timestamped informative
units (di, ti) ordered by the temporal dimension, where ti is the timestamp (as in [3,4,16],
we consider the time as discrete) and di is a set of RDF statements. An RDF statement
is a triple (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L), where I , B, and L identify the sets
of IRIs, blank nodes and literals, respectively. An RDF term is an element of the set
T = I ∪B ∪ L.

RSP Query Languages [3,4,7,16] extend SPARQL3 with operators to cope with
streams. They enable the registration of queries over RDF streams. RSP queries are
evaluated in a continuous fashion, i.e., results are computed at different time instances
as the data flows in the streams. Given a query q, the answer Ans(q) is a stream, to
which the results of the evaluations are appended. This work focuses on the RSP query
languages that support the time-based sliding window operator W, which is defined
through the parameter ω, the width, and β, the slide, and generates a sequences of fixed
windows, i.e., portions of S in a time interval (o, c] [3,4,16]. Given a time-based sliding
window and two generated consecutive windows Wi and Wi+1, defined in (oi, ci] and
(oi+1, ci+1], two constraints hold: ci − oi = ci+1 − oi+1 = ω and oi+1 − oi = β.

Let V be a set of variables (disjoint with I , B and L), graph patterns are expressions
defined recursively as: 1) a basic graph pattern, i.e., a set of triple patterns (ts, tp, to) ∈
(I ∪ B ∪ V) × (I ∪ V) × (I ∪ B ∪ L ∪ V), is a graph pattern; 2) let P1 and P2 be
graph patterns, P1 JOIN P2 or P1 UNION P2 is a graph pattern; 3) let P be a graph
patterns and u ∈ I ∪ V , SERV ICE u P or WINDOW u P is also a graph pattern.
Other graph pattern expressions are possible (e.g. OPTIONAL, FILTER) but are not
presented for the sake of space3.

Like SPARQL, the evaluation semantics of RSP Query Languages rely on the notion
of solution mapping, i.e., a partial function that maps variables to RDF terms, i.e.,
µ : V → T . A full formalization of RSP Query Languages is in [7]. We briefly describe
the semantics of WINDOW, SERVICE, and JOIN in RSP Query Languages. Evaluating
a WINDOW clause results the content of a sliding window, similarly to what GRAPH does
in SPARQL, which refers to the content of a named graph in the data set. The SERVICE
retrieves mappings from SPARQL endpoints by submitting a graph pattern [2]. JOIN
can be formally defined as: let dom(µ) ⊂ V be the set of variables mapped by µ, two
mappings µ1 and µ2 are compatible (denoted with µ1 ∼ µ2) if they assign the same
values to the common variables, i.e., ∀v ∈ dom(µ1) ∩ dom(µ2), µ1(v) = µ2(v). We
name joining variables the elements in dom(µ1) ∩ dom(µ2).

As explained, this paper focuses on queries containing the graph pattern:

(WINDOW uW PW) JOIN (SERV ICE uS PS),

where PW and PS are two graph patterns that share one or more variables, uS is the
address of a service BGD in remote and uW is an IRI denoting a sliding window operator
W defined through ω, β and applied to a stream S.
Local view. Existing RDF stream engines leverage a nested loop join strategy to fetch
data from BGD. It follows that evaluating the above graph pattern can be expensive: each
request to BGD has a latency, computational and, possibly, financial cost. In the SPARQL

3 Cf. https://www.w3.org/TR/sparql11-query/ for additional reference.

4 S. Gao et al.

endpoint of our experiments (see Section 6), each invocation takes 4.6ms. Hence, during
one second, it can only accommodate up to 200 requests. In real scenarios, SPARQL
endpoints are exposed over Internet, and each quest can take more than 500ms [19].

For this reason, we previously proposed to use a local view R to store the result
of PS in the RSP engine [5]. R stores the results of the SERVICE clause so that the
engine computes the results of the query without invoking the SPARQL endpoint of
BGD at each evaluation. However, given that the content of BGD changes over time, the
mappings inR become outdated, and the evaluation of the SERVICE clause produces
different solution mappings can leading to wrong results. We consider these outdated
results invalid. Therefore, each mapping µR ∈ R can be classified as fresh or stale:
µR is fresh at time t, if it is contained in the result set by evaluating the SERVICE
clause over BGD at t; it is stale otherwise (i.e., if BGD changes, it produces different
results when evaluating of the SERVICE clause over µR and the remote BGD). In the
following, we assume that mappings in BGD change with fixed intervals. This happens,
e.g., in data warehouses, where updates are scheduled, or in data generated by sensors or
automatic processes, where data is updated with fixed interval. As in [6], we define the
freshness of an answer Ans(q) as |fresh(Ans(q))|

|Ans(q)| .
Maintenance process. To ensure the freshness of the local view over time, we introduce
a maintenance process MP that refreshes a portion ofR. MP selects a set of mappings
E ⊆ R to refresh within each evaluation of the queries over BGD. The design of
MP is the key to the freshness of Ans(q): if the process correctly identifies the stale
mappings and puts them in E , then both the freshness ofR and Ans(q) increase. Note,
however, that if the number of refresh queries sent to BGD is too high, the presence of
R does not bring any advantage. In practice, MP has to consider (i) Quality of Service
requirements associated to the query, e.g., responsiveness; (ii) system reactiveness, e.g.,
each evaluation should terminate before the next one starts; (iii) constraints imposed by
the BGD providers on the number of requests during a time interval. We capture these
aspects by introducing a notion of refresh budget value Γ , defined as the number of
refresh queries that can be sent to BGD in a given time period under the above constraints.
In our Hypotheses 1 and 2, we assume that Γ is evenly distributed over n evaluations,
when the stream rate is stable. In Hypothesis 3, in order to deal with unstable stream
rate, we relax such assumption by allowing to move budget between evaluations. We use
γ = bΓ/nc to denote the maximum refresh budget available in one evaluation.

3 Related Work
Traditional databases usually materialize remote BGD locally. Sophisticated optimiza-
tions of retrieving remote data on-demand have been introduced to improve availability,
scalability and query processing performance [8,9,14]. The drawback of materialization
is that local data becomes stale when the remote data changes. Those works are neither
in stream processing context, nor considering budget constraints on remote access.

In Complex Event Processing (CEP), the incoming events not only need to be
matched with specified event patterns, but also need to be enriched [10,22]. During
enrichment, it usually needs to access remote BGD through APIs defined by service
providers [11]. These API providers usually apply constraints on the number of accesses
to restrict the massive loads of requests, as the computation and communication costs

Stream-Driven Linked-Data Access 5

involved are shown to be intensive. Given the repetitive nature of the access to BGD [17],
caching techniques can improve on response latency. However, when a cache becomes
outdated, refreshing it raises the trade-off between latency and freshness [1]. More
remote accesses could provide fresher response, but take longer time. Authors in [14]
addresses this trade-off in a web setting, where updates of the remote BGD are pushed
into the system [9]. However, this work does not consider the constraints of service
providers or the view maintenance without updates being pushed into the system.

In RDF processing, SPARQL 1.1 standardizes the access to remote BGD by intro-
ducing the federated extension [2] and the SERVICE clause. Broadly, there are two
ways of accessing BGD: either one pulls the whole data into the query processor [15]
or one ‘federates’ query-execution and transfers the data for individual operations over
the network [12], defining new join strategies that can efficiently process both local and
remote data [15]. Extending static RDF processing, RSP technologies deal with data
of different velocity and variety. C-SPARQL [3] performs query matching on subsets
of the information flow defined by windows. CQELS [16] implements its native query
operators, which can be adaptively optimized to improve performance. MorphStream [4]
allows querying relational data streams over a set of stream-to-ontology mappings. IN-
STANS [20] is a semantic event processing platform, which compiles a query into a
Rete-like structure. All those systems are optimized for processing streams. They support
the SERVICE clause as described above but do not consider budget-constrained updates
in the local view. Hence, our solution is orthogonal to these and other RSP engines.

Our previous work [5] studied the maintenance process of local view for querieswhere
each mapping in the WINDOW clause joins with exactly one mapping in the SERVICE
one. In this paper, we tackle a more general join relationship between WINDOW and
SERVICE clauses, i.e., we extend the 1:1 join relationship to M:N and propose a flexible
budget allocation method that further improves the maintenance process.

4 Problem Definition
Given the graph pattern expression PS in the SERVICE clause, we define two sets of
variables: first, V SR ⊂ var(PS) contains the variables in var(PS) that are related
to the changing part in BGD. In other words, V SR captures the dynamicity of BGD
and contains the information needed to construct the refresh queries that are sent to
remote BGD. Second, V SN are the common variables that join the PS and PW clauses,
i.e., V SN = var(PS) \ V SR. We model the relationship between V SR and V SN as a
bipartite graph. The maintenance processMP exploits the graph to identify the candidate
set E for refreshing. The MP builds a bipartite graph (maintenance graph, Figure 1) out
of C, which is a subset ofR. Mappings in C are (1) stale and (2) belong to the candidate
set of the current window (i.e., they have compatible mappings in the result set ΩW

of the WINDOW clause). The maintenance graph has signature GC = (ΩSN , ΩSR, E),
where ΩSN (ΩSR) is the set of mappings with domain V SN (V SR), and E are the
mappings µR in C, modeled as edges connecting elements of ΩSN and ΩSR.

Different subqueries in PS have different optimization goals. In this work, we
consider: 1) PS is a Basic Graph Pattern (BGP) query; 2) PS is an aggregate query4.

4 We assume that the aggregation is performed locally in the query processor and not in the
remote BGD. It happens, e.g., when BGD is not SPARQL 1.1 compliant.

6 S. Gao et al.

Fig. 1: WINDOW/SERVICE clauses and the Maintenance graph

Case 1: PS is a BGP query. By differentiating V SR and V SN , we split µR into two
mappings µ = µSR ∪ µSN such that dom(µSR) ⊆ V SR and dom(µSN) ⊆ V SN . As
PS is a BGP query, each mapping µRk consists a µSNi and a µSRj . Updating one µSRj
can ensure all its corresponding µRk are fresh. As an example, consider the graph in
Figure 1, where C = {µR

1 , . . . , µ
R
6 }. ΩSR contains the mappings with the variables

in V SR, i.e., {µSR1 , µSR2 , µSR3 } (on the right); ΩSN contains the other mappings, i.e.,
{µSN1 , µSN2 , µSN3 } (in the middle). The mappings inR are encoded as the edges in E
(e.g., (µSN1 , µSR1) represents µR

1). Updating µSR1 will make all its three corresponding
mappings to be fresh: (µSN1 , µSR1), (µSN2 , µSR1), and (µSN3 , µSR1). Given ΩW (on the
left) as the solution of the WINDOW clause and γ as the refresh budget at the current
iteration, the maintenance process can be summarized as: what is the subset of ΩSR to
refresh can maximize the number of fresh join results between µW and µR? Formally, it
can be modeled as the following optimization problem:

Sub. uSRj = 0 or 1 ∀j = [1, |ΩSR|] (1)∑|ΩSR|
j=1 uSRj ≤ γ (2)

fSNi =
∑
µSRj ∀µSRj : (µSNi , µSRj) ∈ E ∀i = [1, |ΩSN |] (3)

cSNi = |{µW : µW∈ ΩW ∧ µW comp. with(µSNi , µSRj)}| ∀i = [1, |ΩSN |] (4)

Max.
∑|ΩSN |
i=1 fSNi ∗ cSNi (5)

The optimization is subject to: in Formula (1), the value of uSRj shows whether the
j-th stale mapping is updated (uSRj = 1) or not (uSRj = 0). The total number of updates
is limited by γ, as in Formula (2). Formula (3) defines fSNi as the number of fresh
mappings µSNi will have. Each µSNi may have several related µSRj . By summing all
its refreshed µSRj , we have the total number of fresh mappings for µSNi . As discussed
above, this is because each updated µSRj produces one fresh µR

k (µSNi , µSRj) . Overall,
Formula (1) to (3) give the total number of fresh µR in the SERVICE clause. Since
each µR may have several compatible mappings in the WINDOW clause, Formula (4)
introduce cSNi to represent the number of compatible mappings of µR

k in the window.
Finally, our optimization goal is to maximize the total number of join results between
WINDOW and SERVICE clauses, which could be defined as the product of cSNi and fSNi ,
as shown in Formula (5).

Stream-Driven Linked-Data Access 7

Case 2. PS is an aggregate query. In this case, the maintenance graphGC is constructed
as the previous case: ΩSN contains mappings with variables used for join, and ΩSR

contains mappings with dynamic values. However, ΩSR in this case does not directly
participate in the join, but are needed for aggregation.

Consider the example in Figure 1: C = {µR
1 , µ

R
2 , µ

R
3 }: µR

1 contains the value of
the aggregate variables by using the data stored in µSR1 ; µR

2 has an aggregate computed
from µSR1 and µSR3 ; µR

3 is computed from µSR1 , µSR2 and µSR3 . The edges in this
case represent the mappings required to compute the aggregates, e.g., (µSN2 , µSR1) and
(µSN2 , µSR3) indicate that the mapping µR

2 should be computed by using both the fresh
values of µSR1 and µSR3 . The maintenance problem is still to choose a subset of µSR to
maximize the fresh join results. However, in this case, updating one µSRj cannot ensure
its corresponding µRk is fresh. To have a fresh µRk , we need all its related µSR to be fresh.
Therefore, the problem can be modeled as:

Sub. uSRj ≤ 1 ∀j = [1, |ΩSR|] (6)∑|ΩSR|
j=1 uSRj ≤ γ (7)

fSNi =
∏
µSRj ∀µSRj : (µSNi , µSRj) ∈ E ∀i = [1, |ΩSN |] (8)

cSNi = |{µW : µW∈ ΩW ∧ µW comp. with(µSNi , µSRj)}| ∀i = [1, |ΩSN |] (9)

Max.
∑|ΩSN |
i=1 fSNi ∗ cSNi (10)

The constraints in Formula (6) and (7) are same with Case 1. Formula (8) uses fSNi
to model the fact that the i-th mapping µSNi is fresh (fSNi = 1) iff all its related µSR

are refreshed. For example, to have a fresh result of µSN2 , both µSR1 and µSR3 have to be
1; otherwise, fSNi = 0. Formula (9) is same with Case 1. Finally, the objective function
in Formula (10) maximizes the number of fresh mappings produced by the join.

Overall, both Case 1 and 2 can be treated as binary integer programming problems.
However, Case 2 can be seen as an extension of the knapsack problem, which is NP-
hard, e.g., packing a µSN has a cost (the number of its µSR). We can only afford a
certain number of µSR, but need to maximize the number of µSN . Furthermore, after
choosing a µSN and its related µSR to pack, those µSR might contribute to other
µSN . Therefore, choosing different µSR will have different influence on the following
decisions. Currently, there is no optimal way to find the best subset of µSR.

5 Maintenance Algorithms
In this section, we propose a set of budget allocation algorithms. Section 5.1 proposes
two greedy algorithms, SBMBGP and SBMAgg, for the problems in Case 1 and 2,
respectively. They aim at maximizing the freshness of the current slide evaluation.
Because the sliding window operator supplies information about future evaluations (i.e.,
elements stay in the window for different periods), Section 5.2 shows how to exploit
this information to improve the maintenance process. Section 5.3 discusses how to
flexibly manage the budget to optimize the overall response freshness. The basic idea is
to uniformly allocate Γ to n evaluations (i.e., γ = bΓ/nc). When it is worthwhile, the
solution trades the current remote accesses for the future ones.

8 S. Gao et al.

5.1 Selectivity-Based Maintenance (SBM)
To maximize the number of fresh join results, we propose the SBMBGP algorithm
for Case 1, where PS is a BGP query; and the SBMAgg for Case 2, where PS is an
aggregate query. In both cases, we start from the maintenance graph GC defined above.
SBMBGP . The objective function of Case 1 (Formula (5)) aims at maximizing the
number of fresh mappings produced by the join. Based on GC , SBMBGP first computes
a score for each mapping µSR ∈ ΩSR, which represent the total number of the fresh
join mappings that would be generated if µSR is updated:

scoreSBM (µSR) =
∑
µSN
i :(µSN

i ,µSR)∈E ci (11)

Based on the selectivity of µSR, the number of results it will have equals to the
sum of each its connected µSN times µSN ’s compatible mappings in the window. Then,
SBMBGP picks µSR with the highest scores under the budget γ to refresh. If there
are more than γ data with the same highest score, our algorithm chooses among them
randomly.
SBMAgg . This case aims to maximize the number of fresh aggregate results. A mapping
µSN produces a fresh aggregate result only if all its connected µSR are fresh. As
discussed, fining the optimal set of µSN is a NP-hard problem. We propose a heuristic
algorithm: SBMAgg . It tries to utilize the budget on those “cheap” µSN , which connects
to less stale µSR. Specifically, SBMAgg picks the mapping ¯µSN with the smallest
amount of connected µSR and puts those µSR in E . Then, ¯µSN and the mappings in E
are removed from the maintenance graph GC , and a new iteration starts again. It ends
when γ elements have been moved into E . If the budget left γ′ is less than ¯µSN , we will
randomly choose γ′ amount of stale µSR.

5.2 The Impact-Based Maintenance (IBM)
The two SBM algorithms maximize the freshness of the current evaluation, but do not
consider future evaluations. As shown in [5], a maintenance process MP can take into
account the sliding window and the changing frequency of the background data to have
a prediction on what will be stale in future. We combine this idea with SBM to improve
the performance of MP .

Before presenting the solution, we first introduce the concept of ranking data by
a score based on two properties from [5], which quantify the impact of a mapping in
future window evaluations. Consider a set of solution mappings ΩW resulted from the
evaluation of a WINDOW clause and a local view R, where each mapping in ΩW can
have only one compatible mapping inR.

The first property is the remaining lifetime, denoted with L. Let µR be a mapping
in R, and let µW be its only compatible mapping in ΩW computed at time t in a
sliding window W = (S, ω, β). The L value of µS at time tnow is computed as d(t +
ω − tnow)/βe. It represents the number of evaluations, in which µS will be involved.
For example, given a sliding window W = (S, ω = 150, β = 30) and a mapping
µW with timestamp t = 100, the L value of the compatible mapping µR at time
100 is L(µR, 100) = d(100 + 150 − 100)/30e = 5; at time 160, it is L(µR, 100) =
d(100 + 150 − 160)/30e = 3. The second property is the number of evaluations
before the next expiration, denoted with B. Given a stale mapping µR, B represents

Stream-Driven Linked-Data Access 9

the number of evaluations that µR would be fresh, if refreshed now. B is computed as
B(µR, tnow) = d(texp − tnow)/βe, where texp is the next time on which µR would
become stale. texp is processed by exploiting the change rate interval information of µR.
At time tnow = 100, the value of B is B(µR, 100) = 3, i.e., if µR is refreshed now, it
would remain fresh for the next three evaluations (evaluations at 100, 130, and 160; at
190, µR will be stale).

Now, L and B can be combined to assign a score to the elements in C (i.e.,
the stale mappings in the local view currently involved). Intuitively, the score of
the mapping µR represents how many future correct results are attainable if µR is
refreshed now. The score of µR at time tnow is computed as score(µR, tnow) =
min{L(µR, tnow), B(µR, tnow)}. If B(µR, tnow) < L(µR, tnow) µR, it can gener-
ate at most B(µR, tnow) fresh join mappings, before it becomes stale while remaining
in the window; otherwise, it generates L(µR, t) fresh join results and will leave the
window before it becomes stale. Based on this score, we extend the two SBM algorithms
so that they also consider the future impact of a refresh. Given the maintenance graph
GC = (ΩSN , ΩSR, E) as defined in Section 4 (M:N bipartite graph), the extensions,
namely IBMBGP and IBMAgg, can cope with the stale mappings µSR appearing in
different mappings µR of the local view.
IBMBGP . We assign a score for the stale mappings in ΩSR, as with SBMBGP . The
formula proposed above for B is still valid for the elements in ΩSR. However, L cannot
be directly associated with mappings in ΩSR because they are related to the mappings
computed by the WINDOW clause ΩW through ΩSN .

L(µR, µW , tnow) = d(tµW + ω − tnow)/βe (12)

score(µR, µW , tnow) = min{L(µR, µW , tnow), B(µSR, tnow)} (13)

score(µR, tnow) =
∑
µW c.w.µR score(µR, µW , tnow) (14)

scoreIBMbgp
(µSR, tnow) =

∑
µR=(µSN ,µSR)∈E score(µ

R, tnow) (15)

IBMBGP associates the remaining lifetime L to the pair of compatible mappings
(µR, µW) as defined in Formula (12): the function considers the arriving time tµW of µW

as well, in order to cope with the fact that there are multiple compatible mappings for a
µSR. This extension allows defining a score for each pair (µR, µW), as in Formula (13).
It represents the number of fresh mappings that are potentially generated by joining µR

and µW in the current and the following evaluations, if a µSR is refreshed. Formula (14)
computes the score of a mapping µR in the local view, which sums the scores of µR

with compatible mappings in ΩW . Finally, IBMBGP assigns the score to the mappings
in ΩSR by Formula (15): it represents the total number of fresh join mappings that will
be generated, if µSR is refreshed. We select γ mappings of µSR with the highest scores
to refresh. Section 5.4 discusses why IBMBGP is a local optimal solution.
IBMAgg . As discuss in Section 4, budget allocation in this case is a NP-hard problem.
When future evaluations of the current data are considered, the complexity increases
further, due to the additional level of combinatorial optimization. Therefore, IBMAgg ex-
ploits a score function to improve the basic SBMAgg algorithm. An aggregate value for
a µSN ∈ ΩSN is fresh only when all the required mappings µSR ∈ ΩSR are fresh.

10 S. Gao et al.

L(µSN , tnow) = d(max
t:µW∈ΩW∧µW c.w. µSN

{t}+ ω − tnow)/βe (16)

scoreIBMagg
(µSN , tnow) = min {L(µSN , tnow), min

µSR:(µSN ,µSR)∈E
{B(µSR, tnow}} (17)

IBMAgg computes the score of the mappings in ΩSN when two or more of them
have the same lowest amount of connected µSR. Specifically, Formula (16) computes
the remaining lifetime of µSN , which takes the most recent timestamp of the compatible
mappings of a µSN in ΩW . Formula (17) reports the function to compute the score,
which considers two factors: (1) µSN will continue to generate fresh mappings as long
as all its related mappings µSR are fresh; (2) their compatible mappings of µSN still
remain in the window.

5.3 Flexible Budget Allocation (FBA)
Above solutions only consider the fixed amount of refresh budget γ assigned in the
current evaluation. However, fixing γ may be inefficient as the number of refresh requests
changes over time. Saving current budget for future updates may improve result freshness,
if the future ones can generate more results.5 The semantics of the sliding window allow
inferring how long each element in the current window will be involved in future joins.
We propose FBA to allocate the refresh budget by considering both current and future
evaluations. Specifically, FBA iterates from the current to the future ω/β slides (window
length/slide length). At each iteration, it identifies the maintenance graphGC

i and the stale
data ΩSRi . It calculates the number of future fresh results for each µSR in every ΩSRi at
their corresponding evaluation time and orders µSR by their scores. FBA allocates total
n× γ budgets to the Top-(n× γ) µSR with the largest scores. Note that this set contains
both current and future stale µSR. If the number of µSR in the current evaluation is less
than γ, it means FBA delays the budgets of current µSR to some future ones.

5.4 Discussion

SBMBGP and IBMBGP are optimal for Case 1. For a BGP query, choosing the top-γ
data in ΩSR based on degSR, which is the number of µSR’s associated elements in
ΩSN . It gives the local optimal solution at the current time without considering the
future impact of ΩSR. This is because the top-γ of ΩSR is the set with the largest sum
of degSR, since the sum of degSR exactly equals the number of fresh results. Therefore,
SBMBGP gives the local optimal solution. The same reason applies to IBMBGP , where
γ mappings with the largest score also gives the most results, as score accurately
reflects the number of future results. Note that since the future elements in stream are
not predictable (with certainty), there is no global optimal solution for BGP query.
Complexity. Both the SBM and IBM only consider data in the current evaluation.
SBMBGP /IBMBGP visits each µW and µR to count the number of mappings and
calculate scores for µSR, which both take linear time of O(|ΩW | + |ΩR| + |ΩSR|).
Then, choosing the Top-γ mapping take O(|ΩSR| log |ΩSR|) time. SBMAgg takes
O(|ΩSN |2 log |ΩSN |) time, as whenever updating a µSN , we have to update all its

5 We acknowledge that not all types of budget can be saved for future (e.g., a fixed amount of
bandwidth cannot be saved). Other types of budgets, such as a supplier charges per request, a
limited data plan, or limited power can be saved.

Stream-Driven Linked-Data Access 11

related µSR. IBMAgg, as an extension of SBMAgg, has the same complexity. FBA has
the same time complexity as IBM, since they have the same way of ranking and choosing
data to refresh, except that IBM chooses data only in the current slide; FBA does this for
a fixed number of future slides.

6 Experiments

Experiment environment. We implemented the maintenance process in a real RSP
system: C-SPARQL [3]. The system registers continuous federated queries with WINDOW
and SERVICE clauses (as in Section 2) and continuously evaluates the query per window
on the incoming stream. Each evaluation joins the content of the current WINDOW with
the results of the SERVICE clause. For evaluating the SERVICE clause, we have
implemented a local view in C-SPARQL to cache remote BGD data (as in Section 4).
Before executing the SERVICE clause, different maintenance algorithms will select
a candidate set E from ΩSR to refresh. For each data in E , the SERVICE clause will
request its fresh value from the remote server. We used Fuseki 2.0.0 as the remote BGD
server and ran it with the C-SRAPQL engine on the same machine. The delay of each
remote access under this setting is much smaller than querying an actual remote server.
Experiment data sets. We employ a real data set and several synthetic data sets to
investigate the performance of our solutions. The real data set was recorded from Twitter.
The synthetic ones were constructed by resembling the real one, but using a generator
that can alter its characteristics. Each data set broadly contains three kinds of data: the
remote BGD, the local viewR, and the input stream. We discuss different parameters of
our data sets below and report their values in each experiment.
The remote BGD. In BGD, data change according to each one’s own change interval
ChR. In realtwitter data, we use the number of a user’s followers as the BGD. When a
tweet mentions several users, the SERVICE clause will provide the number of followers
for each mentioned user in Case 1 (BGP query); it will provide the sum of the followers
for all mentioned users in Case 2 (aggregate query). We collected the follower number
of 100 selected users every minute for four hours by using the Twitter search API [5].
We noticed that the distribution of ChR is highly skewed: only few users have a very
dynamic changing number of followers, while others are stable. Roughly, it resembles a
Beta distribution with α=50 and β=1. In synthetic data, our data generator outputs data
with different ChR-distributions. The generator has two parameters: the skewness of the
distributions and the correlation with the selectivity of data elements in the local view.
The latter controls whether data that changes more frequently can have either a higher or
a lower selectivity.
The local viewR. InR, we model the relationship betweenΩSN andΩSR as a bipartite
graph. Therefore, we are mainly interested in the degSR of ΩSR. After analyzing the
realtwitter data set, we observed a skewed distribution of the degSR that can be modeled
as a Zipf distribution with a skewness parameter of 0.2. In the synthetic data, we can tune
two aspects of degSR: the skewness and the correlation with the stream/remote data.
The stream and the sliding window. By using the Twitter stream API, the real data
set collects a stream of tweets that contains the mentions of the monitored Twitter
users described above. The synthetic data set generates the streaming data through

12 S. Gao et al.

a Poisson process [21]. To verify Hypothesis 3, the stream is generated with a non-
homogeneous Poisson process, where the data arrival rate changes over time, e.g.,
λi = 0.95λ0 · (i mod 2) + λ0 · ((i+ 1) mod 2), where λ0 is the initial expected arrival
interval and i is incremented along the time. The input query has a sliding window length
of ω = 4 seconds and slides every β = 1 second. Each experiment has 50 evaluations,
and the first 10% is used as a warm-up period.

We first use synthetic data sets to verify our hypotheses and study the performance
of our algorithms. The performance and the computational overhead on the real data set
are reported as well. The average response freshness is used as the Key Performance
Indicator (KPI). As discussed in Section 2, it is the ratio of fresh results to total number of
results, within each evaluation. The number of fresh results is acquired by comparing the
current result set to the corresponding set acquired by the original C-SPARQL engine6,
where all results are fresh, since it queries BGD without budget constraints.
The baseline algorithms. We choose two baseline algorithms: 1) Least Recently Update
(LRU), which selects the least recently updated stale data fromR; 2) Random (RAND),
which randomly chooses stale data fromR. All algorithms pick at most γ (the refresh
budget) candidates to refresh.
Resulting synthetic data sets. The default settings of the synthetic data set are: ΩSN

and ΩSR inR contains 50 data elements each. There are 1000 edges µR between ΩSN

and ΩSR. Each µR randomly connects a pair of µSN and µSR. Every µSR has a change
interval ChR randomly chosen from [100, 3000] ms. A stream trace generated from a
Poisson distribution decides the arrival time of each µSN . For the Poisson distribution,
each µSN chooses its λ (the expected arrival interval) randomly from [1000, 2000] ms.
The default budget γ is 10.

6.1 Verifying hypotheses H1 and H2.

H1 and H2 are tested together by comparing the response freshness among RAND, LRU,
SBM and IBM in both subquery cases:
Case 1. In the four settings of Figure 2, both SBMBGP and IBMBGP greatly improve
the response freshness of the baselines by 22%/43%/93% (Min/Average/Max). These
different settings show how the performance improvement generalizes.

In Figure 2(a), we show the performance of using R with different densities, i.e.,
the number of edges |µR| in R is set to be 500, 1000, 1500, and 2000. Note that
2500 (|ΩSN | × |ΩSR|) edges will form a fully connectedR. First, we observe that the
performance of RAND and LRU remain roughly stable over different densities. The
reason is that they select the refresh candidates E “blindly” without considering degSR—
the selectivity of µSR. Therefore, the percentage of edges being updated remains the
same for different densities. On the other hand, in higher densities, the performance
improvement of SBMBGP and IBMBGP decreases a bit. The reason is that in a denser
graph the difference of degSR among µSR becomes less significant. SBMBGP and
IBMBGP always choose the µSR with the highest degSR, however, the percentage of
the chosen µSR to the total number of µSR inGC becomes smaller. Hence, SBMBGP and
IBMBGP favor sparse graphs.

6 http://streamreasoning.org/larkc/csparql/CSPARQL-ReadyToGoPack-0.9.zip

Stream-Driven Linked-Data Access 13

(a) Density (b) Skewness

(c) Budget (d) ChR Range

Fig. 2: SBMBGP and IBMBGP outperform baselines under different settings

Figure 2(b) plots the performance on graphs with different distributions of µSR’s
selectivity. We set the selectivity to follow different Zipf’s distributions, with skewness pa-
rameter s to be 1 (uniform), 0.8 (slightly skewed), 0.5 (skewed), and 0.3 (highly skewed).
Figure 2(b) shows that the performance improvement of SBMBGP and IBMBGP is more
significant in skewed graphs. The reason is same with the second observation above:
SBMBGP and IBMBGP refresh the µSR with the highest degSR. In a skewed graph, the
percentage of the selected µSR increases, which leads to more fresh results. Therefore,
SBMBGP and IBMBGP favor skewed µSR selectivity distribution.

Figure 2(c) shows the performance with different budgets i.e., γ = 5, 10, 20, and 30.
With a larger budget, the performance improvement of SBMBGP and IBMBGP becomes
less. In an extreme case of having a large enough budget to cover most of the stale µSR,
different subsets of E do not affect the freshness anymore. Therefore, SBMBGP and
IBMBGP can achieve significant improvement with less budget. The above three ex-
periments verify H1: considering the selectivity degSR of µSR enables choosing better
candidates for refreshing and improves response freshness.

Regarding H2, Figure 2(d) shows the performance results of BGD change intervals
that are randomly chosen from different ranges: [100, 3000], [500, 2000], and [800,
1200]ms. We can make these comparisons: first, IBMBGP always has a higher freshness
than SBMBGP . Second, having a wider range for ChR leads to better improvement in
IBMBGP . The reason is that IBMBGP chooses µSR with larger “impact”, i.e., larger

(a) Skewness (b) Budget
Fig. 3: SBMAgg and IBMAgg outperform baselines in subquery Case 2

14 S. Gao et al.

(a) Accumulated error (b) Budget usage of FBA over time
Fig. 4: The performance of FBA under different budgets

score, since the score indicates that µSR makes more results in the current and future
slides. Therefore, this experiment verifies H2 and shows that IBMBGP favors larger
ranges of change intervals.
Case 2. WhenPS is an aggregate query, in all of the above cases, we observed similar per-
formance improvements of SBMAgg over RAND and LRU. To save space, we just show
the results with different skewnesses to demonstrate the performance in Figure 3(a). Be-
sides the freshness improvement, we notice that in most cases IBMAgg performs similarly
with SBMAgg. This is because IBMAgg is designed to be at least as good as SBMAgg.
Only when several µSN have the same amount of connected µSR, SBMAgg will choose
the one with the lowest score. Furthermore, for different µSN , when the overlapping
between their associated µSR is small, the chance of µSN s have different scores is larger
and the effect of SBMAgg is, therefore, more significant. Figure 3(b) investigates this by
plotting the results of a special case: a very sparse graph (100 edges) and a tiny budget,
e.g., 3 to 5. In these cases, IBMAgg outperforms SBMAgg by up to 12.5%.

6.2 Verifying hypothesis H3
We compare the performance of FBA with IBM in Case 1 with three refresh budgets,
γ = 5, 10, 15 in Figure 4(a). They track the accumulated number of stale results over
time. By increasing the budget, the gap between FBA and IBM becomes more significant.
Furthermore, when γ = 15, after the first 15 iterations, FBA makes the accumulated stale
result increases very slowly, i.e., the freshness ratio of the answer is almost 100%, while
IBM still keep producing stale results. To explain the improvement, Figure 4(b) plots the
actual amounts of budget that are consumed over time. For IBM, the consumption of
budget will always be a vertical line for different budgets. For FBA, when γ = 5, the line
fluctuates a bit. With larger budgets, the lines fluctuate more. It shows that FBA moves
budgets between different slides to improve freshness.
Results on a real data set. Figure 5 plots the results on a real data set with different
budgets for both cases. We can observe that IBM always achieves the best freshness

(a) Case 1 under different budget (b) Case 2 under different budget
Fig. 5: SBM and IBM outperform baselines in a real data set

Stream-Driven Linked-Data Access 15

and SBM also outperforms the two baseline algorithms. When we decrease the budget,
the performance improvement of IBM and SBM increases. These results confirm our
findings in Figure 2(c).
Computational overhead. We finally report the computational overhead and the average
remote access delay. Under the default setting γ = 20, the total latency of a slide
evaluation is about 94.4 ms. The delay of querying the BGD server accounts for 92 ms
on average (4.6 ms per request); the computational overhead is only about 2.3 ms (2.5%
of the overall latency). Note that, the current setting has the remote BGD server running
locally. When requests are sent over Internet, the computational overhead will become
even more negligible while the performance gain will become more substantial.

7 Conclusions and Future Work

In this paper, we studied the problem of accessing remote background data (BGD) from
an RDF Stream Processing (RSP) context. When BGD is large, stored remotely, and/or
changing over time, accessing it can be expensive, waste resources, and deteriorate the
response time. Hence, a local view is often used to speed up the BGD accesses, but
maintaining it is often subject to refresh budget constraints. This paper proposes to
efficiently allocate the budget for refreshing the local view. Specifically, our solution
relies on a bipartite graph to model the join between stream data and BGD. It exploits the
graph structure to improve response freshness for two kinds of SERVICE subqueries:
a BGP query (Case 1) and an aggregate query (Case 2). Our solution, SBM, exploits a
set of basic algorithms that leverage the selectivity of the join between the stream and
the background data. Experiments show that it can significantly improve the response
freshness up to 25% compared to baseline algorithms (i.e., RAND and LRU). An also
introduce an improved approach, IBM, that takes the future impact of refreshes into
account and improves the performance up to 55.6% over the SBM. Finally, we propose
the FBA optimization that flexibly allocates budget considering not only the current but
also future data. As a result FBA significantly improves over all other solutions and
maintains a freshness of close to 100% even in the light of limited update budget.

Our findings have the following limitations: first, we propose a greedy heuristic
algorithm for Case 2. We hope to investigate a more advanced approximate approach
in the future. Second, the current approach focuses on BGP. Some SPARQL operators
(e.g., OPTIONAL) can introduce new challenges and require non-trivial extensions of
our model. Third, we currently focus on stream querying. In future, we plan to extend
our current optimization problem to reasoning over both stream and BGD. For example,
we plan to investigate how to ensure stream consistency over a background knowledge
base under a given budget.

Even in the light of these limitations we believe that this paper highlights an important
problem in RSP—the joint evaluation of stream and BGD under budget constraints—and
provides solutions for different subqueries. As such it paves the way for truly scalable
RSP systems in real-world environments, where the integration of stream and BGD is
ubiquitous.
Acknowledgments. This research has been partially funded by Science Foundation
Ireland (SFI) grant No. SFI/12/RC/2289, EU FP7 CityPulse Project grant No.603095
and the IBM Ph.D. Fellowship Award 2014 granted to Dell’Aglio.

16 S. Gao et al.

References

1. D. J. Abadi. Consistency tradeoffs in modern distributed database system design: Cap is only
part of the story. Computer, (2):37–42, 2012.

2. C. B. Aranda, M. Arenas, Ó. Corcho, and A. Polleres. Federating queries in SPARQL 1.1:
Syntax, semantics and evaluation. J. Web Sem., 18(1):1–17, 2013.

3. D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. Querying RDF streams
with C-SPARQL. SIGMOD Record, 39(1):20–26, 2010.

4. J. Calbimonte, H. Jeung, Ó. Corcho, and K. Aberer. Enabling query technologies for the
semantic sensor web. Int. J. Semantic Web Inf. Syst., 8(1):43–63, 2012.

5. S. Dehghanzadeh, D. Dell’Aglio, S. Gao, E. Della Valle, A. Mileo, and A. Bernstein. Approx-
imate Continuous Query Answering Over Streams and Dynamic Linked Data Sets. In ICWE
2015, pages 307–325, 2015.

6. S. Dehghanzadeh, J. Parreira, M. Karnstedt, J. Umbrich, M. Hauswirth, and S. Decker. Opti-
mizing SPARQL query processing on dynamic and static data based on query time/freshness
requirements using materialization. In JIST, pages 257–270, 2014.

7. D. Dell’Aglio, E. Della Valle, J. Calbimonte, and Ó. Corcho. RSP-QL semantics: A unifying
query model to explain heterogeneity of RDF stream processing systems. Int. J. Semantic
Web Inf. Syst., 10(4):17–44, 2014.

8. S. Gançarski, H. Naacke, E. Pacitti, and P. Valduriez. The leganet system: Freshness-aware
transaction routing in a database cluster. Info. Systems, pages 320–343, 2007.

9. H. Guo, P.-Å. Larson, and R. Ramakrishnan. Caching with good enough currency, consistency,
and completeness. In VLDB, pages 457–468. VLDB Endowment, 2005.

10. S. Hasan, S. O’Riain, and E. Curry. Towards unified and native enrichment in event processing
systems. In DEBS, pages 171–182. ACM, 2013.

11. A. Hinze, K. Sachs, and A. Buchmann. Event-based applications and enabling technologies.
In DEBS, page 1. ACM, 2009.

12. Y. Ji, Z. Jerzak, A. Nica, G. Hackenbroich, and C. Fetzer. Optimization of continuous queries
in federated database and stream processing systems. pages 403–422, 2015.

13. T. Käfer, J. Umbrich, A. Hogan, and A. Polleres. Towards a dynamic linked data observatory.
LDOW at WWW, 2012.

14. A. Labrinidis and N. Roussopoulos. Exploring the tradeoff between performance and data
freshness in database-driven web servers. VLDB J., 13(3):240–255, 2004.

15. G. Ladwig and T. Tran. Sihjoin: querying remote and local linked data. In The Semantic Web:
Research and Applications, pages 139–153. Springer, 2011.

16. D. Le Phuoc, M. Dao-Tran, J. X. Parreira, and M. Hauswirth. A native and adaptive approach
for unified processing of linked streams and linked data. In ISWC’11, pages 370–388, 2011.

17. R. Lee and Z. Xu. Exploiting stream request locality to improve query throughput of a data
integration system. IEEE Trans. on Computers, 58(10):1356–1368, 2009.

18. A. Margara, J. Urbani, F. van Harmelen, and H. Bal. Streaming the web: Reasoning over
dynamic data. J. Web Sem, 25:24–44.

19. G. Montoya, M.-E. Vidal, O. Corcho, E. Ruckhaus, and C. Buil-Aranda. Benchmarking
federated sparql query engines: Are existing testbeds enough? In ISWC, pages 313–324, 2012.

20. M. Rinne, M. Solanki, and E. Nuutila. Rfid-based logistics monitoring with semantics-driven
event processing. In DEBS, pages 238–245, 2016.

21. M. Sharaf, P. Chrysanthis, and A. Labrinidis. Preemptive rate-based operator scheduling in a
data stream management system. In AICCSA, pages 46–59, 2005.

22. K. Teymourian and A. Paschke. Plan-based semantic enrichment of event streams. In ESWC,
volume 8465, pages 21–35, 2014.

