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Abstract. Semantic Web technologies proved to be successful in inte-
grating and interlinking data. However, traditional processing operations
offered by Semantic Web technologies are limited to conceptual query an-
swering. Growing the size of datasets, typical operations from Machine
Learning or other data-intensive techniques would become important to
be jointly used with Semantic Web processing.

In this paper, we explain how we exploited the capabilities of a pluggable
Semantic Web application framework — the LarKC platform — to incorpo-
rate techniques from Machine Learning (recurring neural networks) and
from Operational Research (routing algorithms) in a scenario of Traffic
Forecasting and Routing in the Milano area. The result is a Web-based
application that let a user calculate the most suitable path in the urban
environment by taking into consideration the city streets characteristics
and the traffic predictions.

1 Introduction

The geo-spatial Semantic Web is gaining attention because of the popularity of
location-based services. A large amount of information is becoming available as
open/linked data and applications are emerging to exploit such datasets and to
apply formal reasoning.

Still some elaborations that are natural operations for other disciplines —
like routing in operational research or trend forecasting in machine learning
— are hardly integrated with Semantic Web techniques. Thus, it is difficult to
find answers to questions like “which is the quickest way to this modern art
exhibition?” or “is it possible to reach this concert tonight in less than 30 minutes
if I can get into my car this afternoon at 8pm?”. Our goal is therefore to find a
combination of pure semantic information (the city points of interest), geo-spatial
processing (the path to the desired destination) and statistical learning (traffic
forecasting), facing in the meantime challenges like data size, time-dependency,
data heterogeneity or quality of data sources.

In this paper we present our solution, based on the LarKC semantic process-
ing platform [5], to overcome the existing problems and to find useful answers to
the aforementioned users’ requests. While using RDF as interchange format to
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support the integration, we combined state-of-the-art statistical learning, prob-
abilistic reasoning and operational research. The result is an application able to
route users from their current position to a target point of interest within the
city of Milano, taking into account both the future traffic conditions and the
projected time of travel.

The description of our solution starts with an overview of the used system
architecture (Section 2) and a description of the data sources (Section 3). We
then describe how the traffic predictions are computed (Section 4) and how
specific traffic queries can be posed and answered efficiently (Section 5). Next,
we evaluate the performance and effectiveness of the framework in answering user
queries (Section 6), and we finish with some concluding remarks (Section 7).

2 System Architecture

As mentioned in the introduction, our objective was to seamlessly combine differ-
ent techniques to answers user’s questions. In particular we needed to integrate
routing, traffic predictions and Semantic Web querying.

For routing computation, we adopted existing operational research algo-
rithms, in particular the Dijkstra algorithm; for traffic forecasting, we used a
statistical approach based on time-delay recurrent neural network [9]. To com-
bine those kinds of data processing together with typical Semantic Web SPARQL
querying, we successfully built our solution with LarKC.
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Fig. 1. Our LarKC workflows

LarKC [5] is a platform for massive distributed reasoning that aims to remove
the scalability barriers of currently existing reasoning systems for the Semantic
Web. LarKC is based on a pluggable architecture in which it is possible to exploit
techniques and heuristics from diverse areas such as databases, machine learning,
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cognitive science, Semantic Web, and others. LarKC also provides with built-in
capabilities of parallelization and distribution of data processing, thus paving
the way to easier scalability of the resulting applications.

Basing our work on the LarKC platform simplified a lot the integration of
neural network algorithms (used to compute traffic predictions) with operational
research methods (used in path finding algorithms) and with Semantic Web
approaches (used to select the results to fulfil users’ requests). Practically, we
wrapped the different techniques and algorithms as “plug-ins” for the LarKC
platform, then we composed those plug-ins in a set of execution workflows to
combine their capabilities in the appropriate manner. Specifically we designed
two execution paths (depicted in Figure 1): a first “scheduled” batch-time work-
flow periodically re-computes the traffic predictions for the next two hours for
all streets in Milano (cf. Section 4); a second “on-demand” runtime workflow
calculates the most suitable path between the starting point and the destination
in the user’s request (cf. Section 5); the two workflows read their inputs and
write their computation results via a shared Data Layer within the platform.
Finally a “Decider” component orchestrates the behaviour of the two workflows
and manages the request/response interaction with the user interface.

Obtaining the same result without LarKC would have required custom inte-
gration coding and ad hoc methods to ensure the scalability or the distribution
of data processing. Alternative approaches to “mash-up” of different techniques
exist — like DERI Pipes [6], SPARQLScript! or SPARQLMotion? — but they
mostly consist in lightweight approaches to fast prototyping with no additional
support for production environments, such as LarKC support to parallelization.

3 Experimental Data

Our traffic routing scenario requires integrating information from several data
sources, which are diverse and heterogeneous in content and also in format and
availability conditions.

To address information integration, we adopted RDF as an interchange for-
mat and we linked data to existing, shared and popular ontologies. We also
adopted solutions to generate virtual RDF graphs on demand, instead of per-
forming bulk translation of data between different formats.

Similarly, we adopted SPARQL as query language, in line with the selection
of RDF format. SPARQL also makes it possible to query distributed sources and
to specify FROM and FROM GRAPH clauses to restrict data selection. Those
choices are well founded in a Urban Computing setting like ours [3].

In the following we give details on the available datasets and we explain the
use of the aforementioned technologies and languages in our scenario.

1 Cf. http://arc.semsol.org/docs/v2/sparglscript.
2 Cf. http://wuw.topquadrant . com/products/SPARQLMotion.html.
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3.1 Available Data and their Characteristics

The data about street topology and traffic sensors were obtained from the Munic-
ipality of Milano, Agenzia Mobilita Ambiente e Territorio (AMAT). They consist
in a very detailed topology map with more than 30,000 streets (i.e. portions of
roads with a specific flow direction) with 15,000 nodes (i.e. road junctions);
each street portion is described with a set of both geometrical attributes (e.g.
coordinates, length, number of ways, etc.) and flow-related characteristics (e.g.
indicators of flow and congestion, turning prohibitions, etc.). The traffic sensors
data give information about 300 sensors with their positioning and sensing capa-
bilities; the 3 years time-series of those sensors’ data records the traffic as sensed
every 5 minutes intervals. As such, the sensors records sum up to more than 10°
records in a 250GB database.

Additionally, for the same time-span, we complemented that information with
historical weather data from the Italian website ilMeteo.it (CSV data with 108
records) and with calendar information (week days and week-end days, holidays,
etc.) to take in consideration seasonal effects.

Those data characteristics pose the following challenges. Our historic traffic
database contains more than 1 billion triples and predictions amount to 9 million
new ones each day. Thus, data size is an issue when real-time predictions are
required. The data is also very noisy, e.g. due to broken sensors, and does not
obey a closed world assumption due to many unobserved effects, e.g. parking
cars or small accidents. Moreover, traffic data is time-dependent and a prediction
framework requires heterogeneous data sources, such as a street graph, historic
time series of speed and flow at traffic sensors, weather data, or different calendar
events like special holidays. On the query side, the routing should take into
account the desired path (the shortest path vs. the fastest one, the best path on
an average day vs. the best one at a specified time-date).

3.2 Data Representation in RDF

Reusing and linking to pre-existing ontologies and vocabularies for geo-spatial
modelling, we designed and specified a dedicated ontology to represent the path-
finding scenario and the outcomes of routing computation. The result is a generic
Urban Path-finding Ontology?, which includes the basic concepts and relations
used to model the street topology and its features, the traffic sensors, their time
records and the traffic predictions.

Streets are represented by Links (portion of roads) and Nodes (junctions);
TrafficSensors are linked to this road topology. Streets are categorized by
LinkCategory (e.g. main road vs. secondary street) and have properties indi-
cating length and reference values for normal flow and congested speed. Those
properties are used to calculate nominal and estimated travel time for all streets;
in case of traffic forecasting, predictions change over time, thus we employed
Named Graphs [1]: for each time interval of validity, we build a time-stamped
graph containing all the predicted travel times attached to Links; the graph

3 Cf. http://larkc.cefriel.it/ontologies/urbanpathfinding.
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timestamp is then used to easily identify and select the relevant graphs. The
advantages of this approach are explained in [1].

4 Traffic Predictions

To derive a valid traffic forecast for the next four hours, we developed a LarKC
plug-in that follows a statistical regression approach to traffic prediction [7].
State-of-the-art neural networks [9] are coupled with semi-supervised learning
methods [11]. In contrast to simulation based methods [8] which describe each
traffic participant individually, this approach does not require detailed, explicit
assumptions about the behaviour of traffic participants. Instead predictions are
directly determined by actually observed data. Moreover, the model complexity
of a statistical approach can be adapted much easier to specific performance
needs.

Our traffic prediction LarKC workflow consists of a pipeline with three steps.
First, we forecast traffic speed and flow at sensor locations for the next four hours
in 5 min intervals; for this task, we use the sensors traffic observations from the
last 24 hours that are available through the shared platform Data Layer. We then
categorize the predictions into two robust traffic conditions: normal or congested.
Last, we generalize the traffic conditions from sensor locations to all streets of
the road network and assign estimated travel times based on predicted traffic
condition, road length and category. The results are then written back to the
Data Layer for further query processing.

4.1 Sensor Predictions

Our prediction approach is focused on the identification of underlying traffic dy-
namics. We assume that traffic dynamics are partially driven by an autonomous
development (e.g. traffic characteristics of different day types, holidays and spe-
cial calendar events) and a variety of external influences (e.g. events, construction
sites or weather conditions).

We use an open, discrete-time state space model [10] with state transition
equation s;11 = f(s¢, ut) and output equation y; = g(s¢). Identifying the dy-
namic system then means finding functions f and g such that the averaged
quadratic distance between the observed data y! and the computed data y; of
the model is minimized. We model f() and g() as parametrized functions in
form of a time-delay recurrent neural network (RNN). Using weight matrices A,
B and C the model equations are s;11 = tanh(As; + Bu) and y; = Cs;. The
corresponding system identification task to determine A, B and C' is solved by
“finite unfolding” in time [9], i.e. we truncate the unfolding after some time steps.
The autonomous part of the RNN is extended into the future by overshooting,
i.e. we iterate matrices A and C' in future direction. Overshooting regularizes
the learning and thus may improve the model performance. Moreover, we get as
an output a whole sequence of forecasts. Figure 2 depicts the resulting spatial
neural network architecture.
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Fig. 2. Time delay recurrent neural network using unfolding in time

The RNNs to predict whole time series of speed and flow at a sensor incor-
porate an additional mechanism to separate time variant from time invariant
structures within the traffic dynamics. We use a coordinate transformation in
form of so-called bottleneck neural networks. The bottlenecks are embedded into
the RNN and are focused on the prediction of the non-linear principal compo-
nents of the traffic dynamics. In the broadest sense, the time variants of the
traffic dynamics are comparable with the (non-linear) principle components of
the traffic dynamics. Since the traffic dynamics can be reconstructed from the
variants and invariants, we only have to forecast the variants in order to pre-
dict the development of the traffic flow and speed. The final neural network
architecture is depicted in Figure 3.
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Fig. 3. RNN incorporating a bottleneck for the separation of time variant from invari-
ant structures

We trained an individual neural network for each of the 317 traffic sensors
having a sufficiently long, hole-free training time-series. Parameter training was
performed off-line with the Siemens proprietary software SENN. The parameters
were then used inside the LarKC plug-in to evaluate the RNNs on-line for each
query with novel observations obtained through the Data Layer.

4.2 Prediction Categorization
Speed and flow are strongly dependent on specifics of a particular link or on the
sensor’s field of view. We thus summarize the speed/flow predictions of the RNNs
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into two more robust traffic conditions: normal or congested traffic. Motivated
by the fundamental diagram of traffic flow, we threshold the predicted traffic
speed at the 70%-quantile of the fastest speeds (cf. Figure 4).
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Fig. 4. Fundamental diagram of traffic flow (left figure from Wikipedia)

4.3 Network-Wide Generalization

To obtain traffic conditions for all streets and not only for sensor locations, we
employ a Bayesian formulation of semi-supervised learning [11]. This is because
the generalization should not only be based on Euclidean distance alone, but
should take the street graph topology into account.

The assumption that neighbouring links have similar traffic conditions f;
(normal=0, congested=1) is encoded in the a priori distribution

p(f) o exp(= 325 e p wij (fi = f5)?)
and traffic predictions y; are included via the likelihood

p(ylf) < [T, exp(— % (fi —¥:)?)

The maximum-a-posteriori estimate can then be computed by solving a linear
system and thresholding. Since all involved matrices are sparse, the linear system
can be solved efficiently even for large street graphs. Nevertheless, we only apply
this method for the 11.000 major streets of Milan. For minor residential streets,
congestion will not normally occur.

5 Traffic Aware Routing

Every hour the traffic prediction are re-computed and updated in the LarKC
Data Layer. Thus, whenever a user makes a request to compute a path between
a starting point and a destination, the second LarKC workflow comes into play.
Hereafter, we explain how such routing is expressed in a SPARQL query and
how the query results are computed.
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5.1 Querying in SPARQL
Our LarKC path-finding workflow encapsulates the operational research algo-

rithm to compute the best path between two points on the map of Milano. The
basic SPARQL query to ask for a path between two nodes is the following*:

SELECT DISTINCT ?7path
WHERE {
7?path a upf:Path;
upf :hasStart <START-NODE>;
upf :hasGoal <END-NODE>;
upf : isComposedBy ?link;
upf :hasPathLength 7length;
upf :hasPathNominalTravelTime ?nominaltt;
upf :hasPathEstimatedTravelTime 7estimatedtt;
upf :hasPolicy ?policy.
?policy upf:hasMinimizedDimension <DIMENSION>.
X

Each policy tries to minimize a specific dimension when computing the
“shortest” path; in our scenario, this dimension can assume three values: the
length, the nominal travel time (traversal without traffic) or the estimated travel
time (using traffic predictions). Following this modelling, we express the path
computation in RDF — our interchange format — while keeping the actual pro-
cessing inside the LarKC plug-in that encapsulates the Dijkstra algorithm.

5.2 Efficient Query Evaluation

The query illustrated above is executed at each user’s request in an “on-demand”
LarKC workflow; in case of travel time estimation, the traffic predictions, in
the form of estimated travel time for each link, are stored in the LarKC data
layer within time-stamped Named Graphs described by their time validity; those
Named Graphs are deleted and substituted by the new predictions every hour as
per the workflow described in Section 4. Thus, at runtime, the relevant graphs
can be selected on the basis of the “time validity” specified in the SPARQL
query, thus allowing for an efficient query evaluation.

The SPARQL path-finding query is minimal in that it just contains the basic
input information for the routing algorithm. Similarly to D2R [4], we are treating
the path computation as a virtual RDF graph, in that the Dijkstra-based plug-
in within the path-finding Workflow “hides” its algorithm behind a SPARQL-
compliant interface.

The value of our approach lies in the capability of the LarKC platform to
seamlessly integrate different technologies to fulfil a specific purpose. LarKC
is “semantic” in that it uses RDF as data format and lightweight data inte-
gration means, but it goes well beyond usual Semantic Web platforms in that
it demonstrates its flexibility in encapsulating neural network systems for the
traffic prediction and operational research routing algorithms for path finding.
Without LarKC, we would have been forced to build an ad hoc system to put

4 The prefix upf: refers to the cited Urban Path-finding Ontology.
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together the different pieces and to make them “talk” to each other. On the
contrary, we do not constrain the Dijkstra algorithm to deal with ontologies and
we do not employ traditional reasoning to compute the shortest path.

6 Evaluation

The quality of the RNN traffic forecasts is examined in Figure 5. On the left traf-
fic flow time series for some examples sensors are shown. The past 24h of known
measurements are used to predict the next four hours. A numerical evaluation
against other standard regression techniques, namely a feed forward neural net-
work and linear regression, is presented on the right. The average relative error
of the time delay RNNs is significantly lower than for the competing methods,
and also shows a much smaller variance.
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Fig. 5. RNN Traffic predictions: time-series with some example sensors (left), compar-
ison of the time delay RNNs vs. feed-forward neural networks and linear regression
(right)

An example of the network-wide generalization is shown in Figure 6. Numer-
ical validation is problematic here, as no in-between-the-sensors information was
available. However, the results are qualitatively plausible. They show connected
areas of congestion around sensor locations with traffic distortions. Different road
directions — modelled with separate links — may show different traffic situations,
as common in real situations.

The Traffic LarKC application for the final user is made available as a Web
application at http://larkc.cefriel.it/traffic-larkc/. As illustrated in
Figure 7, it consists of a simple user interface where users can set start and
destination points, calculate their path according to the three different policies
and visualize the results together with the predicted congestion on a familiar
map.
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Fig. 6. Results of generalizing traffic condition predictions from sensor locations (dots)
to all links of the road network via Bayesian Semi-Supervised Learning. Blue means
normal condition, red congested.
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Fig. 7. Screenshot of the Traffic LarKC user application

6.1 Performance and Scalability

Regarding computational performance, we split the discussion along the two
proposed workflows.

The traffic prediction workflow is invoked once per hour and predicts the
traffic for the next 4 hours on 30.000 links in 5 min intervals. This amounts to
600.000 triples that have to be updated in each run based on the newly available
knowledge. While the whole runs needs 90 seconds, it should be noted that the
interaction with the LarKC Data Layer — deleting old traffic predictions, reading
the necessary data for the RNNs and rewriting new predictions — takes a share of
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81 sec, leaving only 9 sec of the actual prediction algorithms. This may seems like
a large overhead, however, the RDF representation allows for flexibly working
with the traffic predictions in other plug-ins in the platform that do not have to
know about the internals of the traffic prediction computation.

We evaluated the performances and scalability of the traffic aware routing by
stress-testing the path-finding workflow. The test conditions were: LarKC was
deployed on a six-core AMD Opteron Processor 2431 (2.4 GHz) machine®, with
8 GB RAM and Ubuntu 10.04 64 bit; the concurrent requests were issued from
an Intel Core 2 (2.16 GHz) machine, with 2 GB RAM and Microsoft Windows
XP Professional (SP3) in a different European location.

The results, illustrated in Figure 8 (left side), show that the response time is
independent from the minimized dimension; thanks to the periodic “batch-time”
re-computation of traffic predictions, the “run-time” routing is unaffected by the
forecasting processing. Moreover, thanks to a smart result caching approach, the
LarKC platform shows a sub-linear response-time increment with the number of
concurrent requests (cf. Fig 8, right side).
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Fig. 8. Stress tests on the Traffic LarKC without caching (left) and with caching (right)

7 Conclusions

In this paper, we provided experimental proof that state-or-the-art statistical
learning and operational research techniques can be integrated with Semantic
Web query answering techniques within the LarKC platform.

The result of such integration is an efficient system that can be used to offer
traffic-aware routing services. Its efficacy was only partially proved, because the
information system that collects Milano traffic data was not designed to deliver

5 Only one core was assigned to the LarKC virtual machine.
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information in real time®, and, thus, we could not try the presented solution
on real-time data. However, the experiments we conducted on historical data,
the low query latency of the system and its scalability make us believe high
added-value services can be delivered to the final users.
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