
Approximate Continuous Query Answering Over
Streams and Dynamic Linked Data Sets

Soheila Dehghanzadeh1, Daniele Dell’Aglio2, Shen Gao3,
Emanuele Della Valle2, Alessandra Mileo1, Abraham Bernstein3

1INSIGHT Research Center, NUI Galway, Ireland
2DEIB, Politecnico of Milano, Italy

3Department of Informatics, University of Zurich, Switzerland

Abstract. To perform complex tasks, RDF Stream Processing Web
applications evaluate continuous queries over streams and quasi-static
(background) data. While the former are pushed in the application, the
latter are continuously retrieved from the sources. As soon as the back-
ground data increase the volume and become distributed over the Web,
the cost to retrieve them increases and applications become unrespon-
sive. In this paper, we address the problem of optimizing the evaluation
of these queries by leveraging local views on background data. Local
views enhance performance, but require maintenance processes, because
changes in the background data sources are not automatically reflected in
the application. We propose a two-step query-driven maintenance process
to maintain the local view: it exploits information from the query (e.g.,
the sliding window definition and the current window content) to main-
tain the local view based on user-defined Quality of Service constraints.
Experimental evaluation show the effectiveness of the approach.

1 Introduction

RDF Stream Processing (RSP) applications are becoming increasingly popular.
For example, real-time city monitoring applications process public transporta-
tion and weather streams [13]; recommendation applications exploit micro-post
streams and user profiles from social networks [7]; supply chain applications use
commercial RFID data streams and product master data. RSP techniques, at
the basis of those applications, proved to be valid solutions to cope with the
high variety and velocity that characterize those data. However, more complex
analyses can be performed by combining data streams with static or quasi-static
background data. In a Semantic Web setting, background data is usually stored
remotely and exposed through SPARQL endpoints [1].

Current RSP languages, like C-SPARQL [4], SPARQLstream [6], and CQELS-
QL [12] support queries involving streaming and background data. Those lan-
guages are built as extensions of SPARQL 1.1 and consequently support the fed-
erated SPARQL extension [1] and the SERVICE clause that enables the remote
evaluation of graph pattern expressions. However, to the best of our knowledge,
implementations of those languages (RSP engines) invoke the remote services for

each query evaluation, without any optimization. For example, the C-SPARQL
engine delegates the evaluation of the SPARQL operators to the ARQ engine1:
SERVICE clauses are managed through sequences of invocations to the remote
endpoints. This way, they generate high loads on remote services and have slow
response times. Therefore, optimization techniques are highly needed to provide
faster responses to this class of continuous queries.

Instead of pulling data from remote SPARQL endpoints at each evaluation, a
possible solution is to store the intermediate results of SERVICE clauses in local
views2 inside the query processor. These types of solutions are widely adopted in
databases to improve the performance, availability, and scalability of the query
processor [9]. However, the freshness of the local view degrades over time due to
the fact that background data in the remote service change and updates are not
reflected in the local view. Consequently, the accuracy of the answer decreases.
To overcome this issue, a maintenance process is introduced: it identifies the
out-to-date (namely stale) data items in the local view and replaces them with
the up-to-date (namely fresh) values retrieved from the remote services.

Consider a continuous query q over an RDF stream and quasi-static back-
ground data declared to be queryable in a SPARQL SERVICE clause. In this
paper, we investigate the following problem: given q, how can we adaptively
refresh a local view of background data in order to satisfy Quality of Service
constraints on accuracy and response time of the continuous answer? The QoS
constraints determine how much local view can be refreshed. In fact, the main-
tenance process should (1) limit the number of refresh requests according to
responsiveness constraints and (2) maximize response accuracy w.r.t the limited
refresh requests. In the following, we assume that the local view always contains
all the elements needed to compute the current answer; that is, in this work we
do not address the problem of view selection for local materialization [8].

In the first part of the paper, we analyze the problem. We present an example
to show the drawbacks of the current solutions and to motivate the need of
local views and maintenance processes in continuous queries with streaming and
background data. Next, we formalize the problem and elicit the requirements to
design maintenance processes in this setting.

In the second part of the paper, we present a solution for the class of queries
where there is a unique equi-join between the SERVICE and the streaming graph
pattern expressions. That is, the SERVICE has join variable as subject (object)
of a triple pattern where the predicate is functional (inverse functional). In par-
ticular, this query class has a one-to-one mapping between the streaming and
background data: thus, we do not cope with the join selectivity problem. It is
worth noting that a relevant number of queries in the Stream Processing context
are in this class [5,14]. Our solution is a query-driven maintenance process based

1 C-SPARQL Version 0.48; ARQ Version 2.11.1
2 As in [9], with local view we broadly refer to any saved data derived from some under-

lying sources, regardless of where and how the data is stored. This covers traditional
replicated data, data cached by various caching mechanisms and materialized views
using any view selection methodology.

on the following consideration: the accuracy of the current response is not af-
fected by refreshing elements that are fresh or not involved in the current query.
Thus, an efficient maintenance process should refresh local view entries that are
both stale and involved in current query evaluation. We investigate the research
question through two hypotheses.

The first hypothesis claims that the accuracy of the answer can increase
by maintaining part of the local view involved in the current query evaluation
(HP1). Having materialized the intermediate results in a local view, the contin-
uous queries join the local view with the stream. In fact, local view elements
that are involved in current evaluation depend on the content of the stream in
current evaluation which varies over different evaluations. We propose Window
Service Join (WSJ), a join method to filter out local view elements that are
not involved in current evaluation (i.e., their maintenance does not affect the
response accuracy). In this way, the maintenance focuses on the elements that
affect the accuracy of the current response.

The second hypothesis claims that the accuracy of the answer increases by
refreshing the (possibly) stale local view entries that would remain fresh in a
higher number of evaluations (HP2). We propose Window Based Maintenance
(WBM), a policy that assigns a score to the local view elements based on the
estimated best before time, i.e., the time on which a fresh element estimated
to become stale, and the number of next evaluations that the item is going
to be involved. The former is possible by exploiting the change frequency of
elements, while the second exploits the streaming part of the query and the
window operator to (partially) foresee part of the future answers.

The paper is structured as follows. Section 2 introduces the main concepts at
the basis of this work; Section 3 analyzes the problem, by providing a motivat-
ing example, the problem formalization and by identifying the requirements to
design solutions. Section 4 presents the query-driven maintenance process, and
an experimental evaluation is provided in Section 5. Finally, the paper closes
with a brief review of relevant existing works in Section 6, and conclusions and
future works in Section 7.

2 Background

An RDF stream S is a potentially unbounded sequence of time stamped in-
formative units ordered by the temporal dimension:

S = ((d1, t1), (d2, t2), . . . , (dn, tn), . . .)

Where, given (di, ti) ∈ S, ti is the associated timestamp (as in [4,6,12], we
consider the time as discrete), and di is an informative unit modelled in RDF,
i.e., a set of one or more RDF statements. An RDF statement is a triple (s, p, o) ∈
(I∪B)×I× (I∪B∪L), where I, B, and L identify the sets of IRIs, blank nodes
and literals respectively. An RDF term is an element of the set (I ∪B ∪ L).

An RSP query language allows to compose queries to be evaluated at dif-
ferent time instants in a continuous fashion: as the data in the streams change,

different results are computed. Given a query q, the answer Ans(q) is a stream
where the results of the evaluations are appended. In general, RSP languages [4,6,12]
extend the SPARQL query language [16] with operators to cope with streams.

SPARQL exploits graph pattern expressions to process RDF data; they
are built by combining triple patterns and operators. A triple pattern is a triple
(ts, tp, to) ∈ (I ∪ B ∪ V) × (I ∪ V) × (I ∪ B ∪ L ∪ V), where V is the variable
set. A graph pattern expression combines triple patterns using operators, e.g.,
unions, conjunctions, joins. The evaluation of graph pattern expressions produces
a bag (i.e., un-ordered collections of elements that allow duplicates) of solution
mappings; a solution mapping is a function that maps variables to RDF terms,
i.e., µ : V → (I ∪ B ∪ L). With dom(µ) we refer to the subset of V of variables
mapped by µ. Given the focus of this paper, we present the JOIN and SERVICE
operators. JOIN works on two bags of solution mappings Ω1 and Ω2:

join(Ω1, Ω2) = {µ1 ∪ µ2 | µ1 ∈ Ω1 ∧ µ2 ∈ Ω2 ∧ µ1 and µ2 are compatible}

Two mappings are compatible if they assign the same values to the common
variables3, i.e., ∀v ∈ dom(µ1)∩dom(µ2), µ1(v) = µ2(v). We name joining vari-
ables the variables in dom(µ1) ∩ dom(µ2).

SERVICE is the clause at the basis of the federated extension [1], introduced
in SPARQL 1.1. This clause indicates that a graph pattern expression has to be
forwarded to and evaluated by a remote SPARQL endpoint. In this way, it is
possible to retrieve only the relevant part of information to compute the query
answer, instead of pulling the whole remote data and processing it locally.

Among operators in RSP languages, the sliding window is one of the most
important ones. Due to the fact that streams are infinite, the query accesses the
streaming data through windows, views over the stream that include subsets
of the stream elements. The content of the window is a set of RDF statements
and it can be processed through SPARQL expressions. In this work, we focus
on time-based windows, that are defined through a time interval representing
the portion of the stream they capture: a window (o, c] contains all the elements
(d, t) ∈ S s.t. o < t ≤ c. Time-based windows are generated by a time-based
sliding window operator W, defined through two parameters ω and β. The first,
named width, defines the size of the windows (every window has an opening
time o and a closing time c such that c−o = ω); the second, named slide, defines
the time step between windows (given two consecutive windows generated by W
with opening time instants o1 and o2, o2 − o1 = β). When the width and the
slide values are the same, the sliding window is named tumbling window: in
this case, each element of the stream is in one and only one window, i.e., the
stream is partitioned.

To close this section, we introduce the notion of accuracy and latency, that
are used for the assessment of Quality of Service constraints. An RSP engine E is
a system that evaluates continuous query over streams. Given a query q, Ans(q)
– the expected answer, and AnsE(q) – the answer provided by an engine E, the
accuracy acc(E, q) is the ratio between the number of elements of AnsE(q) that

3 In this work, we do not treat the empty mappings.

are also in Ans(q) and the total number of the elements in AnsE(q) (without
repetitions) [15]. In a database system, the query latency is the time required
to process the query answer. This definition has to be adapted for RSP engines,
where queries are evaluated multiple times. In this case, the query latency is a
set of values (one for each evaluation), and with lat(E, q) we indicate the latency
of the current evaluation of q in E.

3 Analysis of the Problem

In this section, we discuss the problem of maintaining local views in a Web stream
processing. In Section 3.1, we discuss an example to highlight the critical aspects
of the problem. In Section 3.2, we formalize the problem. Finally, in Section 3.3,
we elicit the requirements of a solution for this problem. Those requirements take
into account not only the aspects already studied in the database literature, but
also new ones introduced by the Web setting and the presence of data streams.

3.1 Motivating Example

To motivate the problem introduced in Section 1, consider the following exam-
ple4: the cloth brand ACME wants to persuade influential Social Network users
to post commercial endorsements. To take precedence over the rival companies,
the ACME Company wants to identify new influential users as soon as possible
and persuade them. For this reason, ACME wants to develop an application on
top of an RSP engine that runs a continuous query q (sketched in Listing 1.1)
to identify the influential users.

Listing 1.1: Sketch of the query studied in the problem

1 REGISTER STREAM Ans(q) AS CONSTRUCT{ ?user a :InfluentialUser }
2 WHERE {
3 WINDOW W(200,20) ON S { ?user :isMentionedIn ?post [...] }
4 SERVICE BKG{ ?user :hasFollowers ?followerCount }
5 ... }

The identification process is based on two search criteria, associated to two
main characteristics of influential users: first, users must be trend setters, i.e.,
there are more than 1000 posts mentioning them in the past 200 minutes. Second,
the users must be famous, i.e., they have more than 10000 followers. ACME
wants to have reports from the application every 20 minutes, and can accept
approximate results with at least 75% accuracy. This identification process is
encoded in the query q, that is evaluated over two input data: first, the micro-post
stream is processed through a sliding WINDOW (in Line 3) to count the mentions;
second, the number of follower (background data) is retrieved by invoking the
BKG SPARQL endpoint (in Line 4) through the SERVICE clause. It is worth

4 Inspired by this SemTech 2011 talk: http://www.slideshare.net/testac/
how-hollywood-learned-to-love-the-semantic-web.

noting that the background data is quasi-static, which means the data changes
very slowly, compared to the stream input.

An RSP engine can evaluate the joins involving SERVICE clauses with dif-
ferent strategies, as in SPARQL engines [2]. In the following, we analyze two of
them. The first strategy, Symmetrical Hash Join, evaluates the SERVICE and
the WINDOW graph pattern expressions, and then joins the results. The drawback
of this strategy is the size of the SERVICE clause answer. In fact, its volume can
be huge, and moving it from the remote endpoint to the local one is a time
consuming task. Moreover, only a small subset of the SERVICE clause answer
usually has compatible mappings in the WINDOW clause evaluation. So, most of
the solutions retrieved from BKG are transferred and then discarded.

The second strategy, Nested Loop Join first evaluates the WINDOW graph
pattern, and then submits a set of queries to the BKG service to retrieve the
compatible mappings. This approach is the one currently implemented in query
processors like ARQ (and consequently, in the C-SPARQL engine). In this case,
only the relevant mappings for the current answer are retrieved (the triple pat-
tern in Line 5 is bound with the values from the solution mappings of the WINDOW
clause). However, this strategy also produces a high number of queries for the
BKG SPARQL endpoint. In a continuous querying scenario, it can lead to a
huge sequence of queries to be continuously sent to the remote service over time
(and it could lead, in the worst case, to denial-of-service problem in BKG).

The quasi-static feature of the background data motivates the idea of ma-
terializing remote data in local views to limit the number of remote SERVICE
invocations. In fact, local view eliminates the need of invoking SERVICE clauses.
The local view is created by pulling the results of evaluating the SERVICE graph
pattern at the system initialization (as in the first strategy). As alluded before,
BKG data are changing. Thus, during the query evaluation, a maintenance pro-
cess should refresh the data in local view to reflect those changes. The execution
of the maintenance process is time consuming, due to the data exchange with the
remote BKG service. In fact, the more frequent the maintenance process is ap-
plied, the more time is required to answer the current query. This leads to a loss
of responsiveness but the response will be more accurate. Thus, the maintenance
process should adjust the trade-off among accuracy and responsiveness of the
evaluation. In database research, existing works on adaptive maintenance prob-
lem usually assume the existence of update streams [11] that push the changes in
the local view; however, this assumption is rarely valid in a Web setting, where
data are distributed and owned by different entities.

3.2 Problem Formalization

We can model the problem, in the context of an RSP engine E, as the execution
of a continuous query q over an RDF stream S and a remote SPARQL endpoint
BKG with some QoS constraints (α, ρ), i.e., the answer should have an accuracy
equals or greater than α and should be provided at most in ρ time units. The
output of the evaluation AnsE(q) is the sequence of answers produced by E

continuously evaluating q over time. The QoS constraints can be expressed in
the following way:

(acc(E, q) > α) ∧ (lat(E, q) < ρ) for each evaluation (1)

At each evaluation, the accuracy of the answer should be greater or equal to α,
while the query latency should be lower or equal to ρ.

However, as the content of BKG changes over time, the evaluation of the
SERVICE clause produces different solution mappings and consequently, the
mappings in R become outdated and lead to wrong results. For this reason,
each mapping µR ∈ R can be fresh or stale: µR is fresh at time t if it is con-
tained in the current evaluation of the SERVICE clause over BKG, it is stale
otherwise, i.e., BKG changed and the evaluation of SERVICE produces a map-
ping µS different from µR.

A maintenance process selects a set of elected mappings E ⊆ R. The map-
pings in E will be refreshed through queries to the BKG SPARQL endpoint.
The design of the maintenance process is key to the accuracy of the answer: if
it correctly identifies the stale mappings and puts them in E , the refresh action
increases the number of fresh elements in R as well as in AnsE(q). If the number
of update queries sent to BKG is high, the maintenance process is slow and in-
fluences the responsiveness of the query q. It is important to find stale mappings
and put them in E , to avoid unnecessary maintenance of still valid data.

To summarize, the problem is the design of a maintenance process to min-
imize both the number of stale elements involved in the computation of the
current answer and the cost of the maintenance process w.r.t. the constraints on
responsiveness and accuracy (α, ρ).

3.3 Elicitation of the Requirements

Requirements are critical to lead the design of the maintenance process. In fact,
they specify the characteristics of the solution and ways to improve it.

Change rate distribution. Data in the background data set change with
various rates. If the data elements change uniformly (i.e., all have similar change
rates), oldest entries are highly likely to be stale entries. Thus, policies like
Least Recently Updated (LRU) that updates the oldest entries, provides the best
maintenance. However, in the Web it is possible to find many data sets where
the uniform change rate assumption does not hold, e.g., DBPedia Live and social
networks [17]. That is, the maintenance process should take into account various
change rates of the data elements (requirement R1).

Furthermore, the change rate of a data element can vary overtime. For exam-
ple, in Twitter, the follower number of a singer changes faster during concerts,
and it changes slower when he is recording new albums. Thus, the maintenance
process should be adaptive w.r.t the change rate variations at run-time (R2).

Query features. Each query should satisfy the given constraints over re-
sponsiveness and accuracy (R3). The query processor should optimize the main-
tenance process to satisfy both of these constraints. However, there are cases

where it is not possible to achieve the goal: when it happens, the maintenance
process should raise an alert to the query processor (R4).

Moreover, it is possible to gather requirements while processing queries. First,
the join between stream and quasi-static data exposes important information to
improve the maintenance process: it may consider the join selectivity of map-
ping in the local view to identify those that have greater effect on accuracy (R5).
Second, the streaming part of the query can be exploited by the maintenance
process. In particular, the sliding window can enable the optimization the main-
tenance process: at each evaluation, the window slides, and part of the data is
not removed from the window. Given the window definition, it is possible to
compute how long a data item will remain in the system and use it in the main-
tenance process (R6), e.g., if two mappings have the same changing rate, we can
update the one for which the compatible mapping from the stream has longer
lifetime, as it has higher probability to save more future updates.

4 Solution

Our proposed solution is a query-driven maintenance process for the local viewR,
in the context of the evaluation of continuous query q under QoS constraints on
responsiveness and accuracy. The maintenance process is query-driven in the
sense that it refreshes the mappings involved in the current query evaluation.

Fig. 1: The maintenance process components

The maintenance process identifies an elected set of mappings E and refresh
them. The process, depicted in Figure 1, consists of the proposer, the ranker and
the maintainer (the light gray boxes). The proposer (number 1 in the figure)
selects the set C of candidate mappings for the maintenance from the local view
R. The idea behind the proposer is that the accuracy of the answer depends
on the freshness of the mappings involved in the current query evaluation, so
the maintenance should focus on them. The ranker (number 2 in the figure)
computes the set E ⊆ C of mappings to be refreshed; finally, the maintainer
(number 3) refreshes the mappings in E . After the maintenance process, the join
(the dark gray box, number 4 in the figure) of the WINDOW and the SERVICE
expressions is computed by joining the results of the WINDOW clause evaluation
with the local view (that contains the results of the SERVICE clause evaluation).

The solution is implemented in a system composed of two components, rep-
resented by the two dashed boxes in Figure 1. They are the Window Service

Join method (WSJ) and the Window Based Maintenance policy (WBM). The
former, presented in Section 4.1, performs the join and starts the maintenance
process (as proposer); the latter, presented in Section 4.2, completes the mainte-
nance process by ranking the candidate set and maintaining the local view. The
intuition behind WBM is to prioritize the refresh of the mappings that are going
to be used in the upcoming evaluations and that allows saving future refreshes.

As explained in Section 1, in the following we study the class of queries where
there is a unique join between the WINDOW and the SERVICE graph pattern
expressions. Moreover, to be compliant with SPARQL 1.0 endpoints, we assume
that the queries sent to refresh the local view cannot make use of the VALUE
clause. In other words, every query refreshes one replicated mapping.

4.1 The Window Service Join method

WSJ performs the join and starts the maintenance process (as proposer). As
explained above, the query answering process should take into account the QoS
constraints (requirement R3) including latency and accuracy as defined in Equa-
tion 1. While the former can be tracked – the RSP engine can measure the query
latency –, the latter can only be estimated, – the engine cannot determine if a
mapping is fresh or stale, and consequently cannot compute the accuracy. This
consideration leads the design of WSJ: it fixes the latency based on the respon-
siveness constraint ρ and maximize the accuracy of the answer accordingly.

To cope with the responsiveness requirement, we introduce the notion of
refresh budget γ as the number of elements in R that can be maintained at each
evaluation. As explained in Equation 1 the latency value should be lower or equal
to the response time constraint ρ. Given the time rq to evaluate the query 5 ,
and the time to perform the maintenance process of γ elements (

∑γ
i=1 ri), the

latency of the engine E to execute the query q is:

lat(E,q) = rq +

γ∑
i=1

ri ≤ ρ (2)

Algorithm 1 shows WSJ. First invocation of the next() method retrieves the
results of Ωjoin (i.e., the block in Lines 1–12 is executed). That is, the WINDOW
expression is evaluated and the bag of solution mappings Ωwindow is retrieved
from the WinOp operator (Lines 2–4). WSJ computes the candidate set C as
the set of mappings in R compatible with the ones in Ωwindow (Line 5). In fact,
the mappings in R that are not compatible with the ones in Ωwindow do not
affect the accuracy of the current query evaluation, so they are discarded. C and
the refresh budget γ are the inputs of the maintenance policy M (Line 6), that
refreshes the local view. Then, an iterator is initiated over Ωwindow (Line 7).
Finally, the join is performed (Lines 9–13) between each mapping in Ωwindow
and the compatible mapping from R and returned at each next() invocation.

5 rq includes the time to transform the query plan, optimize and evaluate it, and
appending the output to the answer stream.

Algorithm 1: The WSJ next() method

1 if first iteration then
2 while WinOp has next do
3 append WinOp.next() to Ωwindow

4 end
5 C = R.compatibleMappings(Ωwindow);
6 M(C, γ);
7 it = Ωwindow.iterator();

8 end
9 if it is not empty then

10 µW = it.next();

11 µR = R.compatibleMapping(µW);

12 return µW ∪ µR

13 end

Figure 2 shows the running example of this section. The join is performed at
time 8. The local viewR contains the result of the SERVICE clause evaluation(on
the right): µR

a , µR
b , . . . , µR

f . As described in Algorithm 1, WSJ first computes

Ωwindow (on the left): at time 8, it contains µWa , µWb , µWc and µWd . Next, WSJ
starts the maintenance process. First, it filters R in order to build the candidate
set C with the compatible mappings of the ones in Ωwindow. C contains µR

a , µR
b ,

µR
c and µR

d . The other two mappings in R, µR
e and µR

f , are not compatible with
the mappings in Ωwindow, so they are not considered for the refresh.

Fig. 2: An example of the maintenance process execution

4.2 The Window Based Maintenance policy

The Window Based Maintenance (WBM) policy elects the mappings to be re-
freshed and maintains the local view accordingly. Its goal is to maximize the
accuracy of the query answer, given that it can refresh at most γ mappings at
each evaluation. WBM aims at identifying the stale mappings in the candidate
set C and choose them for maintenance.

To determine if a mapping in C is fresh or stale, an access to the remote
SPARQL endpoint BKG is required, and it is not possible (as explained above).

To overcome this limitation, WBM computes the best before time of the map-
pings in C: as the name suggests, it is an estimation of the time on which a fresh
mapping becomes stale. Being only estimation, it is not certain that after the
best before time the mapping becomes stale, but only possibly stale.

Algorithm 2: The M method

1 PS = possibly stale elements of C;

2 foreach µR ∈ PS do
3 compute the remaining life time of µR;

4 compute the renewed best before time of µR;

5 compute the score of µR;

6 end
7 order PS w.r.t. the scores;
8 E = first γ mappings of PS;

9 foreach µR ∈ E do
10 µS = ServiceOp.next(JoinVars(µR));

11 replace µR with µS in R;

12 update the best before time τ of µR;

13 end

The maintenance policy operates as sketched in Algorithm 2. First, WBM
identifies the possibly stale mappings. Next, WBM assigns a score to the possibly
stale elements PS (Lines 2–6), in order to prioritize the mappings when the
refresh budget is limited. The score is used to order the mappings. WBM builds
the set of elected mappings E ⊂ PS to be refreshed, by getting the top γ ones
(Lines 7-8). Finally, the refresh is applied to maintain R (Lines 8–13): for each
mapping of E , WBM invokes the SERVICE operator to retrieve from the remote
SPARQL endpoint the fresh mapping and replace it in R. Additionally, in this
block, the best before time values of the refreshed elements are updated. In the
following, we go in depth in the algorithm using the example in Figure 2 to show
how WBM works. We initialize the best before time of all local view elements
with initial query evaluation time.

Identification of possibly stale elements (Line 1). The core of WBM is
the identification of possibly stale mappings. The local view R is modeled as:

{(µR
1 , τ1), (µR

2 , τ2), . . . , (µR
n , τn)}

Where µR
i is the solution mapping inR, and τi represents the current best before

time. In Figure 2, the best before time values are shown on the right side of the
picture (the black and white mappings in the local view), e.g., the best before
time of µR

a is 7, the one of µR
b is 9 and the one of µR

c is 6.
The set of possibly stale mappings PS is a subset of mappings in C such that

their best before time is lower or equal to the current evaluation time. Continuing
the example, given the candidate set C = {µR

a , µ
R
b , µ

R
c , µ

R
d }, WBM selects the

possibly stale mappings by comparing their best before time values with the the
current time (8). The possibly stale mappings (the black mappings in the local

view) are PS = {µR
a , µ

R
c , µ

R
d }. The best before time of µR

b is 9, so this mapping
does not need to be refreshed.

Computation of the remaining life time (Line 3). The elements in PS
have to be ordered to find the elected set E . The ordering is based on two scoring
values, presented in this and in the following step. The first is the number of next
evaluations that involve the mapping. The continuous nature of the query and
the presence of a sliding window allow to partially foreseeing which mappings
are involved in the next evaluations. The remaining life time L is the number
of future successive windows (i.e., evaluations) that involve the mappings in the
local view R. Given a sliding window W(ω, β), we define L for the ith mapping
µR
i of R at time t as:

Li(t) = d ti + ω − t
β

e (3)

Where ti is the time that the compatible mapping µWi enters the window.
Continuing the example in Figure 2, the remaining life time of µR

c at the
current time instant is Lc(8) = 3: the compatible mapping µWc is in W1, W2 and
W3, so µR

c is involved in three successive evaluations. Similarly, the values of µR
a

and µR
d are 1 and 3 respectively.

Computation of the renewed best before time (Line 4). The second
scoring value of WBM identifies the number of successive evaluations on which
the element will remain (possibly) fresh, if refreshed now. In other words, first,
WBS computes the renewed best before time τnexti of the mapping. The renewed
best before time of the mapping µR

i at time t is computed as:

τnexti = τi + Ii(t) (4)

Where τi is the current best before time, and Ii(t) is the change interval,
and represents the time difference between the next and the current best before
time. Ii(t) is not known and has to be estimated. In fact, it is not possible to
discover when the next change of a mapping is going to happen. In this paper,
we estimate Ii(t) using the change rate value of the element i.

In the running example, the renewed best before time of the elements in PS
are shown by the arrows at the right of Figure 2 (the gray mappings): the one
of µR

a is 12, the one of µR
c is 11 and the one of µR

d is 9.
To have a scoring value comparable with the remaining life time value, it is

necessary to normalize the renewed best before time with the window parameters
ω and β: this value, denoted with Vi(t), is defined as:

Vi(t) = dτ
next
i − t
β

e

V measures in how many evaluation µR
i will remain possibly fresh. The V values

of µR
a , µR

c and µR
d at time 8 are respectively 4, 3 and 1.

Election of the mappings to be maintained (Lines 5–8). After the com-
putation of Li(t) and Vi(t), WBM assigns scores to the possibly stale elements
to sort them for election. The score scorei(t) of the ith mapping is defined as:

scorei(t) = min(Li(t), Vi(t)) (5)

The idea behind this equation is to order the mappings based on number
of refreshes that will be saved in the future. With regards to the example, µR

a

is the mapping with the highest renewed best before time, but the compatible
mapping µWa exits in the window W2, so it is not going to be involved in the
next evaluation unless µWa enters the window again. In contrast, the compatible
mappings of µR

c and µR
d exit respectively in W3 and W4, so the WBM prioritizes

them. Between µR
c and µR

d , the former has the priority on the latter. In fact, the
renewed best before time of µR

c is higher than the one of µR
d , and it does not need

to be refreshed anymore in the (near) future. To summarize, the scores of the
mappings in PS at time 8 are: scorea(8) = 1, scorec(8) = 3 and scored(8) = 1.

Next, WBM ranks the PS entries by the score value (in decreasing order)
and picks the top-γ to be refreshed. WBM picks randomly among mappings with
same scores. It is worth noting that if the query q uses a tumbling window, the
value of Li(t) is zero for all the elements and thus WBM sorts the possibly stale
elements according to the Vi(t) value. Given the refresh budget γ value 1, the
elected mapping is µR

c , i.e., the one with the highest score (3).

Maintenance of the local view (Lines 9–13). Finally, WBM refreshes the
local view R. WBM replaces each mapping in E with the respective fresh ver-
sion retrieved from the remote service BKG. Additionally, WBM updates the
best before time of the refreshed elements, by replacing the current best before
time with the next one, as defined in Equation 4. Completing the example, the
mapping µR

c in R is replaced with the fresh value µS
c retrieved by BKG, and

the its best before time τc is updated to 11.

5 Experiments

In this section, we experimentally study the performance of WSJ and WBM
to verify the validity of the hypotheses presented in Section 1. We set up two
experiments: first (Section 5.1) investigates if WSJ improves the accuracy of the
answer (HP1); second (Section 5.2) studies if WBM contributes to improve the
accuracy of the answers (HP2). In the following, we describe the experimental
setting to perform the experiments, inspired by the example in Section 3.1.

Data set preparation. An experimental data set is composed by streaming
and background data. We built two data sets: one with real streaming data and
synthetic background data; and one with real streaming and background data.

The real streaming data has been collected from Twitter. We identified four
hundred Twitter verified users as a user set, and we collected three hours of
tweets related to them. In the meanwhile, we also built the real background
data, as the number of followers of the user set elements. We collected snapshots
of the users’ follower count every minute to keep track of the changes and to
replay the evolution of the background data6. Additionally, we built the synthetic

6 It is worth to note that in this way we do not hit the Twitter API limits, see
https://dev.twitter.com/rest/public/rate-limiting

background data assigning a different change rate at each user (that is stable over
time), and changing the follower count accordingly.

Query preparation. The test query performs the join in Listing 1.1 between
collected data. The query uses a window that slides every 60 seconds. Slides
should be greater than or equal to intervals among consecutive snapshots to
make sure that the current snapshot is different than the previous one.

5.1 Experiment 1

The first experiment aims at investigating the hypothesis HP1: the accuracy
of the answer can increase by maintaining part of the local view involved in
the current query evaluation. To verify this hypothesis, we follow a comparative
approach: we evaluate the join using WSJ as join method, and we compare it with
a set of baselines. As lower bound proposer, we consider the worst maintenance
process (WST), that does no refresh local view throughout evaluations, i.e., it
represents a proposer with an empty candidate set. As upper bound, we use
BST (best): its candidate set consists of γ certainly stale elements (where γ
is the refresh budget). This proposer cannot be applied in reality (as it is not
possible to know if a local view element is stale or fresh), and we use it as
upper bound. Finally, we use the proposer GNR: it uses the whole local view as
candidate set, i.e., it maintains the local view without considering the query. To
complete the maintenance process, a policy is required. We use two maintenance
policies inspired by the random (RND) and Least-Recently Used (LRU) page
replacement algorithms. RND picks γ mappings from the candidate set, while
LRU chooses the γ least recently refreshed mappings in the candidate set.

(a) Synthetic data set (b) Real data set

Fig. 3: Evaluation of the WSJ proposer.

Figure 3 shows the results of the experiment; the charts show the cumulative
error over the multiple evaluations (the lower, the better). WST and BST are
the lower and upper bounds so all the other results are between those two lines.
It is possible to observe that GNR performs slightly better than the lower bound
WST. Comparing GNR and WSJ, WSJ performs significantly better than GNR
with both maintenance policies.

To study if the result generalizes, we repeated the experiment with different
refresh budgets. To set the refresh budget, we first computed the average dimen-
sion of the candidate sets ¯|C| = 33, and we set the refresh budget as 8%, 15% and

Table 1: WSJ effect on maintenance accuracy in synthetic/real data sets

Synthetic Real

γ WST GNR WSJ BST WST GNR WSJ BST
RND LRU RND LRU RND LRU RND LRU

8% 0.23 0.26 0.27 0.40 0.38 0.49 0.30 0.34 0.33 0.46 0.47 0.56

15% 0.23 0.26 0.28 0.48 0.51 0.66 0.30 0.36 0.35 0.57 0.58 0.74

30% 0.23 0.32 0.33 0.64 0.76 0.94 0.30 0.41 0.41 0.68 0.80 0.98

30% of ¯|C| (respectively 3, 5 and 10). Table 1 reports on the average accuracy
for both the synthetic and the real data set. It is worth noting that WSJ shows
better improvements than GNR when the refresh budget increases: moving γ
from 8% to 30%, in the synthetic (real) data set GNR improves from 0.26 (0.27)
to 0.32 (0.33), while WSJ improves the accuracy from 0.40 (0.38) to 0.64 (0.76).
It happens because WSJ chooses the mappings from the ones currently involved
in the evaluation, while GNR chooses from the whole local view. A similar trend
is visible also when the real data set is considered.

5.2 Experiment 2

The second experiment aims at investigating the hypothesis HP2: the accuracy
of the answer increases by refreshing local view entries that estimated to be stale
and would remain fresh in a higher number of evaluations. This requires studying
the performance of WBM. Like in the first experiment, we follow a comparative
approach, and we compare WBM with other maintenance policies. As lower
bound, we use WST (in this case represents a policy that does not refresh any
mapping); as upper bound we use WBM*, i.e., the WBM policy that can access
the real change time instants of the mappings from the remote service. Like BST,
WBM* cannot be used in reality, due to the fact that change time instants are not
available ahead of time. Finally, we use RND and LRU (presented in the previous
section) as policies to make the comparison. Due to the good performance of
WSJ, we used it as proposer for all policies.

(a) Synthetic data set (b) Real data set

Fig. 4: Cumulative error of accuracy using WBM, LRU and RND as ranker

Results of the experiments are shown in Figure 4. In both the synthetic and
real data set cases, the WBM maintenance policy outperforms RND and LRU by

having a lower cumulative error. This difference is more visible in the synthetic
data set due to the fixed change rate assumption. Similarly, WST and WSJ-
WBM* are lower and upper bounds respectively. Figure 4a and 4b shows that
WSJ-WBM clearly outperforms baselines (WSJ-RND, WSJ-LRU).

We repeated the experiment with different time constraints (i.e., refresh bud-
gets), in order to study the behavior of the policies under different situations.
Results are shown in Table 2. In general WBM shows better performance than
the two baseline policies we considered. However, WBM is more efficient on lower
refresh budgets. Comparing WBM and WBM*, it is possible to notice that the
accuracy difference increases as the refresh budget increases: WBM* accuracy
move from 0.52 (0.59) for the synthetic (real) data set to 0.94 (0.98), while
WBM moves from 0.46 (0.52) to 0.81 (0.80). In the experiment with the real
data set, the estimation error is higher when the refresh budget is high; there
WBM performance is equal to the LRU one.

Table 2: Accuracy comparison of LRU, RND & WBM in synthetic/real data sets

Synthetic Real

γ WST WSJ
RND

WSJ
LRU

WSJ
WBM

WSJ
WBM*

WST WSJ
RND

WSJ
LRU

WSJ
WBM

WSJ
WBM*

8% 0.23 0.39 0.38 0.46 0.52 0.30 0.45 0.47 0.52 0.59

15% 0.23 0.49 0.50 0.60 0.71 0.30 0.57 0.58 0.61 0.77

30% 0.23 0.64 0.76 0.81 0.94 0.30 0.68 0.80 0.80 0.98

6 Related Work

Local views, such as replicas and caches, materialize the content of remote
sources in the query processor to improve availability, scalability and perfor-
mance [9]. Any materialization methodology will lead to a trade-off among
space/time. More materialization requires more space but will decrease the re-
sponse time and vice versa. However, maintenance processes have to be intro-
duced in order to update the view and reduce inconsistencies. View maintenance
has been studied extensively in database community [11,3,19,9]. Any mainte-
nance methodology will lead to a trade-off among response quality and time.
That is, the shorter maintenance intervals will lead to a higher response quality
but will increase the response time due to the consumption of computational
resources and vice versa. A common assumption among all maintenance meth-
ods is the existence of update streams, i.e, streams carrying the changes of the
relations. An adaptive materialization strategy with an eager view maintenance
(i.e., all the updates are processed on arrival) is proposed in [3]. It manages the
trade-off among space and query response time and adaptively refines data for
materialization by monitoring their cost/benefit ratio under different circum-
stances. In [11] a lazy maintenance (i.e., update processing can be postponed)
solution is proposed. It works in cases where the cost of updating the views
is high. In this work, authors propose a query-driven maintenance approach to
apply a subset of update-stream so that user-defined constraints on the quality
of the answer is not impaired. Providing approximate results according to the

quality constraints is a well known problem [9]. In a similar attempt, [10] pro-
pose a technique to optimize the view maintenance process in order to target
the trade-off between time and quality of the response. However, in a seman-
tic web setting, update streams are not available because most of the SPARQL
endpoints are not providing the update stream of their underlying data.

In [18] the time/quality trade-off has been addressed in a Semantic Web
scenario: each query is split between the local query processor and a live query
processor to achieve faster response than a live query processor and more fresh re-
sponse than the local query processor. However, parameters to adjust the trade-
off among freshness and fastness are fixed and therefore it is not possible to
adjust them based on user-defined trade-off on a query basis.

7 Conclusions and Future Work

In this work, we studied the problem of evaluating continuous queries that ac-
cess remote background data. Local views speed up the evaluation, but require
maintenance processes to keep the replicated data updated. We elicited the re-
quirements for designing a local view maintenance process, and we used them to
build our solution. Considering the QoS constraints associated to the query (R3),
the solution uses the available time to maximize the accuracy of the answer. It
is done through two components, WSJ and WBM. WSJ identifies the candidate
local view elements by keeping the compatible mappings from the WINDOW
clause (R6). WBM identifies the set of possibly stale elements in WSJ output
by considering the change rates (R1), and elects the ones to be maintained.

The maintenance process we propose can estimate the accuracy of the pro-
vided answer (R4): in fact, WBM identifies the set of possibly stale elements, and
consequently the freshness of the response of the current evaluation. In future
works, we plan to study the quality of this estimator.

A current limit of the solution is on how WBM estimates possibly stale
elements. As explained, there is an error in the estimation of the best before time
values, i.e., the time on which the elements in the local view may become stale.
In future work, we aim at improving this estimation by exploring alternative
methods to compute the time change interval Ii(t), e.g., machine learning and
event detection algorithms. More generally, we will extend WBM to take into
account the requirements R2, i.e., the dynamic change rate of the elements.

A possible extension is related to the requirement R5. The current solution
is designed for queries that have a one-to-one mapping between the results of
SERVICE and WINDOW clauses. We aim at investigating the general case, where
each mapping from the SERVICE clause evaluation join with a variable number of
entries from the WINDOW clause evaluation. In those cases, various entries of local
view affect the response accuracy differently. The maintenance policy should take
this aspect into account when picking the local view entry to maintain.

Acknowledgments. This research has been partially funded by Science Foun-
dation Ireland (SFI) grant No. SFI/12/RC/2289, EU FP7 CityPulse Project
grant No.603095 and the IBM Ph.D. Fellowship Award 2014 granted to Dell’Aglio.

References

1. C. Aranda, M. Arenas, Ó. Corcho, and A. Polleres. Federating queries in SPARQL
1.1: Syntax, semantics and evaluation. J. Web Sem., 18(1):1–17. Elsevier, 2013.

2. C. Aranda, A. Polleres, and J. Umbrich. Strategies for executing federated queries
in SPARQL1.1. In ISWC 2014, Proc. Part II, pages 390–405. Springer, 2014.

3. S. Babu, K. Munagala, J. Widom, and R. Motwani. Adaptive caching for contin-
uous queries. In ICDE 2005, pages 118–129. IEEE, 2005.

4. D. F. Barbieri, D. Braga, S. Ceri, E. Della Valle, and M. Grossniklaus. Querying
RDF streams with C-SPARQL. SIGMOD Record, 39(1):20–26. ACM, 2010.

5. S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian. A
comparison of join algorithms for log processing in MapReduce. In SIGMOD 2010,
pages 975–986. ACM, 2010.

6. J. Calbimonte, H. Jeung, Ó. Corcho, and K. Aberer. Enabling query technologies
for the semantic sensor web. Int. J. Sem. Web Inf. Syst., 8(1):43–63. IGI, 2012.

7. I. Celino, D. Dell’Aglio, E. Della Valle, Y. Huang, T. K. Lee, S. Kim, and V. Tresp.
Towards BOTTARI: using stream reasoning to make sense of location-based micro-
posts. In ESWC 2011 Workshops, Revised Papers, pages 80–87. Springer, 2011.

8. F. Goasdoué, K. Karanasos, J. Leblay, and I. Manolescu. View selection in semantic
web databases. PVLDB, 5(2):97–108. VLDB Endowment, 2011.

9. H. Guo, P. Larson, and R. Ramakrishnan. Caching with good enough currency,
consistency, and completeness. In VLDB, pages 457–468. VLDB Endowment, 2005.

10. H. Guo, P. Larson, R. Ramakrishnan, and J. Goldstein. Relaxed Currency and
Consistency: How to Say Good Enough in SQL. In SIGMOD, pages 815–826.
ACM, 2004.

11. A. Labrinidis and N. Roussopoulos. Exploring the tradeoff between performance
and data freshness in database-driven web servers. PVLDB, 13(3):240–255. Morgan
Kaufmann, 2004.

12. D. Le Phuoc, M. Dao-Tran, J. Parreira, and M. Hauswirth. A native and adaptive
approach for unified processing of linked streams and linked data. In ISWC 2011,
Proc. Part I, pages 370–388. Springer, 2011.

13. F. Lécué, S. Tallevi-Diotallevi, J. Hayes, R. Tucker, V. Bicer, M. L. Sbodio, and
P. Tommasi. Smart traffic analytics in the semantic web with STAR-CITY: Sce-
narios, system and lessons learned in Dublin City. J. Web Sem., 27:26–33. Elsevier,
2014.

14. A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter. Supporting
incremental join queries on ranked inputs. In VLDB, pages 281–290. Morgan
Kaufmann, 2001.

15. A. Parssian, S. Sarkar, and V. S. Jacob. Assessing Information Quality for the
Composite Relational Operation Join. In ICIQ, pages 225–237. MIT, 2002.

16. M. Schmidt, M. Meier, and G. Lausen. Foundations of sparql query optimization.
In ICDT, pages 4–33. ACM, 2010.

17. X. Sean and Z. Xiaoquan. Impact of wikipedia on market information environ-
ment: Evidence on management disclosure and investor reaction. MIS Quarterly.
Management Information Systems Research Center, 2013.

18. J. Umbrich, M. Karnstedt, A. Hogan, and J. Parreira. Freshening up while staying
fast: Towards hybrid sparql queries. In EKAW, pages 164–174. Springer, 2012.

19. S. D. Viglas, J. F. Naughton, and J. Burger. Maximizing the output rate of multi-
way join queries over streaming information sources. In VLDB, pages 285–296.
VLDB Endowment, 2003.

